Skip to main content

LCF in 2025 (September)

 

LCF in 2025 (September) 

(Quotes from articles and books published in September 2025 mentioning the ligamentum capitis femoris) 



Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).  01 September 2025. PREPRINT (Version 1)  [i]  researchsquare.com

 

Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.  [ii]  link.springer.com

 

Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis, 37(3), 171-177.   [iii]  pmc.ncbi.nlm.nih.gov  

 

Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P., & Gavaskar, A. S. (2025). Surgical Hip Dislocation Using a Trochanteric Flip Osteotomy. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 59-75). Singapore: Springer Nature Singapore.  [iv]  link.springer.com

 

Kumar, A., & Trikha, V. (2025). Femoral Head and Acetabular Fractures (Pipkin Type IV Injuries). In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 121-139).  [v]  Singapore: Springer Nature Singapore.  link.springer.com

 

Gänsslen, A., Graulich, T., Lindtner, R. A., Krappinger, D., & Lindahl, J. (2025). Suprafoveal Fractures. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 91-106). Singapore: Springer Nature Singapore.  [vi]  link.springer.com

 

Sharma, M., & Sen, R. K. (2025). Femoral Head and Neck Fracture. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 107-119). Singapore: Springer Nature Singapore.  [vii]  link.springer.com

 

Oklaz, E. B., Ahmadov, A., Gurbuz, N., Sezgin, E. A., & Atalar, H. (2025). Hidden blood loss in dega osteotomy with varus derotation osteotomy is more pronounced than in varus derotation alone. Journal of Pediatric Orthopaedics B, 10-1097.  [viii]   journals.lww.com

 

Chen, J. H., Al’Khafaji, I., Ernstbrunner, L., O’Donnell, J., & Ackland, D. (2025). Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip. Clinical Biomechanics, 106666.  [ix]  clinbiomech.com  ,  sciencedirect.com

 

Silva, M. V. S., Serafim, B. L. C., de Angeli, L. R. A., & Zuccon, A. (2025). Surgical treatment of hip dysplasia in cerebral palsy: A retrospective comparison between open and closed reduction. Medicine, 104(36), e44245.  [x]  journals.lww.com

 

Teng, J., Zhang, S., Li, J., Li, B., Ren, L., Wang, K., ... & Ren, L. (2025). Artificial Hip Joint Round Ligament with High Fidelity to Human Structures and Mechanics via Bioinspired 3D Braided Fibers. Journal of Bionic Engineering, 1-13.  [xi]  link.springer.com

 

Kale, D., Kale, S., Pratheep, S., Modak, A., Bharamgunde, R., & Kale, S. (2025). Extraarticular Interfragmentary Fixation of an Irreducible Pipkin Type 1 Fracture Dislocation of the Hip–A Case Report. Journal of Orthopaedic Case Reports, 15(9), 194-198.  [xii]  pmc.ncbi.nlm.nih.gov

 

Yang, G., Huang, S., Liu, D., Yuan, Y., Yu, Y., Li, Y., ... & Zhao, Z. (2025). Early postoperative three-phase Technetium-99 m bone scanning predicts traumatic osteonecrosis in patients with femoral neck fractures: a 2-to 6-year follow-up study. Archives of Orthopaedic and Trauma Surgery, 145(1), 1-8.  [xiii]   link.springer.com

 

VIDYESH, M. S. (2025). EVALUATION OF TOGGLE PINNING TECHNIQUE FOR SURGICAL MANAGEMENT OF COXOFEMORAL DISLOCATION IN DOG (Doctoral dissertation, MAHARASHTRA ANIMAL AND FISHERY SCIENCES UNIVERSITY).  [xiv]  krishikosh.egranth.ac.in

 

Baek, N. J., Park, S., Lee, S., Kim, D. H., Kim, H. J., Chang, J. S., & Yoon, P. W. (2025). Reliability of MRI-based grading using Yoon’s classification for labral tears in hip dysplasia. Journal of Hip Preservation Surgery, hnaf058.  [xv]  academic.oup.com

 

Donati, D., Tedeschi, R., Garnum, P. E., Vita, F., Tarallo, L., Faldini, C., & Catani, F. (2025). A narrative review on greater trochanteric pain syndrome: diagnostic imaging and non-surgical treatments. Musculoskeletal surgery, 1-10.  [xvi]  link.springer.com

 

Zhang, T., Yang, J., & Yu, S. (2025). Secreted Frizzled‐Related Protein 2 Promotes Osteogenic Differentiation and Bone Regeneration in Perthes Disease When Targeted by miR‐106a‐5p. Journal of Cellular and Molecular Medicine, 29(18), e70804.  [xvii]  pmc.ncbi.nlm.nih.gov

 

Pür, B., Yılar, S., Dağ, İ., Kaşali, K., Uzun, A. A., Şenocak, E., & Demir, M. (2025). Comparative evaluation of long-term spinopelvic morphology after salter and pemberton osteotomies in DDH patients: follow-up of 8 years. BMC Musculoskeletal Disorders, 26(1), 860.  [xviii]   bmcmusculoskeletdisord.biomedcentral.com

 



NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

  


[i] The edge of the proximal side of femur is circular in shape and rounded, with well-developed ligament fossa. Posterior to the ligament fossa is a distinct dorsolateral trochanter. … Distally from the ligament fossa, on the lateral surface of femur, both the anterior trochanter (=lesser trochanter in some research, e.g. Raath 1977). 

Raath, M. (1977). The Anatomy of the Triassic Theropod Syntarsus rhodesiensis (Saurischia: Podokesauridae) and a Consideration of Its Biology. Department of Zoology and Entomology, Rhodes University, Salisbury, Rhodesia. 1–233. 

 

[ii] This depression provides attachment to the ligament of the head of the femur (ligamentum capitis femoris) that connects the head of the femur 

  

[iii] Furthermore, the presence of contrast filling around the ligamentum teres and extracapsular contrast leakage was more common in the ACH [adhesive capsulitis of the hip] group.

  

[iv] Fractured head fragments, especially type I (infra-foveolar) fragments, are often attached to the ligamentum teres and are retained in the acetabular cavity after dislocation. The fragment may have to be detached from the ligamentum teres …

 

[v]  Femur-Head Fracture: Fracture through the femur-head, usually in the region of the fovea (where ligament teres is attached), seen on anteroposterior (AP) and lateral hip radiographs as loss of femur-head sphericity. 


[vi] Simultaneously, medially directed shear forces act on the femoral head, causing a suprafoveal fracture consistent with Pipkin type II, often with the fragment retained within the joint due to an intact ligamentum teres

  

[vii] The antegrade blood supply is provided by the foveal artery (or artery of ligamentum teres), which is a branch of the obturator artery. 

  

[viii] Arthrotomy was routinely performed in all cases to remove the pulvinar tissue and ligamentum teres.

  

[ix] Abstract

Background

The ligamentum teres contributes to hip joint stability, yet the effect of surgical reconstruction of ligamentum teres tears on hip joint function is poorly understood. This study aimed to employ a cadaver model to quantify peak pressure, average pressure, contact force, and contact area between the femoral head and acetabulum in native, ligamentum teres deficient and reconstructed hips.

Methods

Nine fresh-frozen human cadaveric hips were dissected and mounted to a multi-axis Materials Test System. Digital pressure sensors were placed on anterior, posterior, and superior regions of the acetabulum. Joint loading was simulated in flexion, neutral position, and extension. Peak pressure, average pressure, contact force, and contact area were measured.

Findings

Ligamentum teres deficiency caused a significant increase in average pressure (mean difference: 161.6 kPa, p = 0.002) in the superior acetabulum in the neutral hip relative to the intact hip and in peak pressure (mean difference: 1462.5 kPa, p = 0.023) in the anterior acetabulum in the extended hip compared to the intact hip. Ligamentum teres reconstruction subsequently restored average and peak pressure to levels not significantly different from the intact state (p > 0.05). Reconstruction also led to a significant decrease in average pressure (mean difference 241.0 kPa, p = 0.047) and contact force (mean difference: 124.5 N, p = 0.039) in the posterior acetabulum in the flexed hip relative to the intact hip.

Interpretation

Ligamentum teres reconstruction may help to prevent excessive contact that occurs in the ligamentum teres deficient hip and may mitigate or slow the onset of degenerative changes associated with ligamentum teres deficiency.

  

[x] The joint capsule is exposed and its surface must be largely freed from the adjacent adipose tissue. The capsular incision is made through a T-shaped incision. The ligamentum teres and the pulvinar are resected if they are thickened, and the transverse acetabular ligament is cut. After these obstacles are removed, we perform the VDRO [varus derotation osteotomies] through a lateral incision in a standard fashion. 

 

[xi] Abstract

The rising prevalence of hip joint disorders, particularly among aging populations, highlights the need for advanced surgical and rehabilitation strategies. The artificial ligament plays a key role in restoring joint stability in the treatment of hip joint disorders. Existing commercial artificial ligaments differ from biological ligaments in that they lack the complex hierarchical organization of natural ligaments. This study introduces bioinspired hierarchical 3D braided ligaments to replicate the nonlinear mechanical behavior of human ligaments. We examined the effects of braiding strands and angles on the tensile properties of artificial ligaments, including toe-region strain and linear modulus. Key characteristics such as stress relaxation and fatigue were also assessed. Using FEA, we simulated fiber interactions and macroscopic mechanical behavior, revealing the mechanisms behind the J-shaped curve of braided ligaments. Based on theoretical analysis, we selected a high-fidelity artificial braided ligament and compared the hip joint’s range of motion with and without it. The results show that the artificial hip with the round ligament closely mimics the human hip’s motion (beyond 95% similarity in all directions including three translations and three rotations), which reveals their potential to enhance joint stability and serve as effective therapeutic and educational tools in medical practice.

  

[xii] Palpation of the fragment, which was found lying inside the hip, revealed that the head was rotated and attached to the ligamentum teres. It was derotated back to its original position. On palpation, the fragment was very large and thus no attempt to cut the ligamentum teres was done. The hip was reduced and visualized under the image intensifier television (IITV) in the lateral position.

 

[xiii] In contrast, the preserved blood perfusion in the medial pillar [femoral head] may originate from the inferior retinaculum artery or the ligamentum teres artery entering the femoral head.

  

[xiv]

Surgical procedure for toggle pinning

After exposing the hip joint, the acetabulum was cleared of debris, haematoma, or fibrin. Exposure to acetabular fossa was improved by outward rotation and adduction of the limb and a hole was drilled in the acetabular fossa with a 3.5 mm diameter drill bit. The toggle pin i.e. endobutton with suture strand looped through it was pushed through the drilled hole to rest against the medial surface of the acetabulum, within the pelvic cavity. The remnants of the detached round ligament were cleared from the fovea capitis and a tunnel was created from the fovea capitis to the greater trochanter using a 2.7mm drill bit. Using a guidewire, the suture strands attached to the toggle pin was fed through the tunnel. After reducing the joint, the ends of the suture strands were secured over the lateral surface of the femur, just below the greater trochanter using a 2nd titanium endobutton.

 

[xv] Acetabular labral tears are a common source of pain, discomfort, and functional impairment in patients with hip dysplasia, and may contribute to the development of hip osteoarthritis …

On MRI evaluation, paralabral cysts were detected in 55.2% (n = 58) of hips, and arthroscopic evaluation revealed partial LT tears in 78.1% (n = 82).

LT tear (Arthroscopy)

No evidence of tear 22 (21.0%)

Partial tear 82 (78.1%)

Complete tear 1 (1.0%)

  

[xvi] Intra-articular sources of hip pain include labral tears, loose bodies, femoroacetabular impingement (FAI), capsular laxity, ligamentum teres rupture, and chondral damage [27].

27. Redmond JM, Chen AW, Domb BG (2016) Greater trochanteric pain syndrome. J Am Acad Orthop Surg 24:231–240

 

[xvii] In summary, the rabbits were anaesthetised using intraperitoneal pentobarbital sodium. The rabbit model of Perthes disease was then produced by incising the ligamentum teres of the femoral head and ligating the femoral neck with an elastic non‐absorbable suture; this obstructed blood flow to the epiphysis. Ad‐SFRP2 (1 × 108 GC) and miR‐106a‐5p agomir (20 nmol) were injected into the femoral head 2 weeks after surgery (Figure S1); the same volumes of saline were used in the control and model groups. The rabbits were then euthanised at 8 weeks after surgery, and the femoral heads were harvested for subsequent experiments.

Fig. 5 SFRP2 accelerates bone regeneration and reduces deformity of the defective femoral head in vivo. (A) Macroscopic morphological image of the femoral head in the control, model, miR‐106a‐5p agomir, Ad‐SFRP2, and Ad‐SFRP2 + miR‐106a‐5p agomir groups. (B–F) Representative images of micro‐CT and quantitative analysis of the parameters. Scale bars: 10 mM. Results are shown as means ± SD for three independent experiments. *p < 0.05; **p < 0.01 versus the model group; # p < 0.05; ## p < 0.01 versus Ad‐SFRP2 group + miR‐106a‐5p agomir. (Open access) 

 

[xviii] All surgical procedures were performed according to the original technique descriptions by Salter and Pemberton. An anterior iliofemoral approach was used in all cases. During surgery, the ligamentum teres was excised, the transverse acetabular ligament was transected, and all intra-acetabular soft tissue obstacles were removed to allow full reduction of the femoral head.

  

                                                                    

Author:

Arkhipov S.V. – candidate of medical sciences, surgeon, traumatologist-orthopedist. 


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, history 

 



                                                                                                                      

Comments

Popular posts from this blog

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

LCF in 2025 (November)

  LCF in 2025 ( November )   (Quotes from articles and books published in  October  2025 mentioning the ligamentum capitis femoris)   Awad, A., Rizk, A., ElAlfy, M., Hamed, M., Abdelghany, A. M., Mosbah, E., ... & Karrouf, G. (2025). Synergistic Effects of Hydroxyapatite Nanoparticles and Platelet Rich Fibrin on Femoral Head Avascular Necrosis Repair in a Rat Model.  Journal of Biomedical Materials Research Part B: Applied Biomaterials ,  113 (11), e35672.    [i]    onlinelibrary.wiley.com   Loughzail, M. R., Aguenaou, O., Fekhaoui, M. R., Mekkaoui, J., Bassir, R. A., Boufettal, M., ... & Lamrani, M. O. (2025). Posterior Fracture–Dislocation of the Femoral Head: A Case Report and Review of the Literature.  Sch J Med Case Rep ,  10 , 2483-2486.     [ii]    saspublishers.com  ,  saspublishers.com   Vertesich, K., Noebauer-Huhmann, I. M., Schreiner, M., Schneider, E., Willegger,...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

1816MeckelJF

    The author discusses the anatomy and function of the ligamentum capitis femoris (LCF), and also identifies one of the reasons for its damage. The translation was done in collaboration with ChatGPT 3.5.   Meckel JF. Handbuch der menschlichen Anatomie. Zweiter Band. Besondere Anatomie. Halle, Berlin: Buchhandlung des Hallischen Waisenhauses, 1816. [fragment] Quote p p . 3 65 -366 c. Runds band §. 948. Gerade vor dem Theile der Synovialhaut, welcher auf der Lücke unter dem brückenförmigen Theile der Knorpellippe liegt, entspringt ein, ungefähr einen Zoll langes, sehr länglichviereckiges Band, das runde Band des Oberschenkels (Ligamentum ossis femoris teres s. rotundum) welches, an beiden Enden etwas ausgebreitet, sich mit seis nem äußern an die Bertiefung im Kopfe des Oberschenkels beines heftet und zu noch größerer Befestigung deffelben beiträgt. Es besteht aus longitudinalen Fasern, welche sich an das obere un...

BIBLICAL DAMAGE

  Biblical damage (Artists and sculptors on the LCF damage described in the Bible:  painting, sculpture, icon, fresco, engraving…)     386Brescia_Casket  Bas-relief. Drawing depicting the circumstances and mechanism of the LCF injury. 6c.Vienna_Genesis   Miniature. Drawing depicting the circumstances and mechanism of the LCF injury. 10c.Cross  Bas-relief. Drawing depi cting the circumstances and mechanism of the LCF injury.  1000Jacob&Archangel  Fresco. Drawing depicting the circumstances and mechanism of the LCF injury.  1050Aelfric     Drawing depicting the circumstances and mechanism of the LCF injury.  1140St.Marie-Madeleine   Capital. Drawing depicting the circumstances and mechanism of the LCF injury.  1143 Palantine_Chapel   Mosaic . Drawing depicting the circumstances and mechanism of the LCF injury. 1213L’histoire_ancienne.   M iniature . Drawing depicting the circumstances and mecha...

1832MeckelJF

  Fragments of the book Meckel JF. Manual of general, descriptive, and pathological anatomy (1832) dedicated to ligamentum capitis femoris (LCF). The author briefly discusses abnormalities of the LCF and its distal insertion. Quote p. 257 § 308. Among the deviations from the normal state, primitive deviations of the external form are rare, and usually attend anomalies of the other tissues. Among these we arrange, for instance, the absence of the tendons of the abdominal muscles, that of the ligaments of the vertebral column, and that of the dura mater of the brain and spinal marrow, &c., in a congenital fissure of the abdomen, of the vertebral column, and of the skull, and that of the tendons and the muscles of a finger, when the finger itself is wanting. But the fibrous organs are seldom deficient, when the other tissues with which they combine to form a part are present — for instance, the tendon alone of a muscle is rarely absent, or the tunica sclerotica, when the othe...

1884SuttonJB

  Fragments from the article Sutton JB. Ligaments: Their Nature and Morphology (1884). The author discovered that in the ostrich the ligamentum capitis femoris (LCF) was not continuous with the ambiens muscle, but with a muscular slip which ran parallel with the-muscle, and ended in the adductor mass. This publication develops the theme of article 1883SuttonJB .   Quote pp. 228-229 I must now pass on to consider certain ligaments of the appendicular skeleton, commencing with some additional remarks on the ligamentum teres. The Journal of Anatomy and Physiology, vol. xvii January 1883, contains a short article on the ligamentum teres, in which I have endeavoured to point out that many ligaments are the tender of muscles which were originally in relation with the joint; but the parent muscle has either formed new attachments or become obsolete, whilst the tendon remains as a passive element in the articulation. In addition to the ligamentum teres the following structures ...

1853KnoxR

  We publish selected quotations about ligamentum capitis femoris (LCF) from Knox  R.  Manual of Human Anatomy (1853). The author points out that LCF is a thick and dense bundle of fibers. It is attached to the edges of the acetabular notch and intertwined with the fibers of the fibrocartilaginous ring of the acetabulum. Robert Knox writes: « The functions of the round ligament have not been satisfactorily determined.» Quote p. 142 Fig. 104. - This instructive section of the hip-joint requires little or no explanation. - d points to the superior part of the capsular ligament. Fig. 105. - Capsular ligament of the hip-joint; also Poupart's ligament. - a , the capsular ligament; b , the oblique, or accessory ligament of the joint; d , attachment of the external pillar of Poupart's ligament to the tubercle of the pubis; e , deep structures immediately behind that portion of Poupart's ligament, called the ligament of Gimbernat; c , ligamentum obturatorium.   Quo...

The Emergence of Life

THE EMERGENCE OF LIFE According to our definition, life is a way of existence of material objects capable of regulating the level of average daily mechanical stress and reproducing similar entities (2004 Архипов - БалтийскийСВ ). As can be seen, in the given definition there is no reference to protein bodies and organic compounds. Life as a special qualitative state of matter is fundamentally possible not only on the basis of carbon. At the same time, living systems with a different chemistry are unknown, as are extraterrestrial beings. The oldest potentially biogenic carbon on our planet appeared 4.10±0.01 billion years ago, and the simplest living beings appeared 4.1-3.8 billion years ago (2015BellEA_MaoWL). The split of single-celled, anucleate forms of prokaryotes (Procaryota) into bacteria (Eubacteria) and archaea (Archaebacteria) occurred about 4.0 billion years ago (2002HedgesSB). The oldest stromatolites, which are the remains of cyanobacterial communities (Cyanobacteria), bega...

2025VertesichK_ChiariC

   Content [i]   Annotation [ii]   Original text (in  German) [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments from the article: Vertesich K, Noebauer-Huhmann IM, Schreiner M, Schneider E, Willegger M, Böhler C, Windhager R, Chiari C. The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study (2025). The authors discuss the diagnosis of pathology of the ligamentum capitis femoris (LCF) based on radiological & MRI data. The text in Russian is available at the following link: 2025VertesichK_ChiariC . [ii]   Original text (in   German)   The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study Klemens Vertesich, Iris-Melanie Noebauer-Huhmann, Marku...