Skip to main content

LCF in 2024 (December)


Publications about the LCF 2024 (December) 

  

Kneipp, M. L. A., Sousa, L. N., Cota, L. O., Malacarne, B. D., Winter, I. C., Santana, C. H., ... & Carvalho, A. M. (2024). Bilateral coxofemoral dysplasia in a Mangalarga Marchador foal. Journal of Equine Veterinary Science, 105253. [i]  sciencedirect.com

 

Siddiq, B. S., Gillinov, S. M., Cherian, N. J., & Martin, S. D. (2024). Arthroscopic Reconstruction of the Acetabular Labrum Using an Autograft Hip Capsule. JBJS Essential Surgical Techniques,14(4), e23.  [ii]  pmc.ncbi.nlm.nih.gov

 

Kraft, D. B., Delahay, J. N., & Murray, R. S. (2024). Pediatric Orthopedics. In Essentials of Orthopedic Surgery (pp. 139-185). Cham: Springer Nature Switzerland.  [iii] link.springer.com

 

Gebriel, M. E., Farid, M., Mostafa, A., Shaker, N., Abouelela, Y., & Noor, N. (2024). The Surgical Anatomy of Canine Coxofemoral Joint and Innovative Educational Models as El-Nady Technique and 3D Printing. Egyptian Journal of Veterinary Sciences, 1-11.  [iv]  ejvs.journals.ekb.eg   researchgate.net

 

Beyer, R. S., Steiner, Q., Hennessy, D. W., Rosas, H. G., Goodspeed, D. C., & Spiker, A. M. (2024). Assessment and management of periacetabular aneurysmal bone cysts—a series of four cases. Journal of Hip Preservation Surgery, hnae040. [v] academic.oup.com

 

Simpson, M., Lean, F., Marti-Garcia, B., & Meeson, R. (2024). Chronic progressive left hind limb lameness in an 11-month-old intact female Labrador Retriever Poodle cross. Journal of the American Veterinary Medical Association, 1(aop), 1-3. [vi] avmajournals.avma.org

 

Paul, N., Sharma, A., Sarkar, B., Bhakhar, A., Yadav, A. K., & Azam, M. Q. (2024). Bilateral Traumatic Posterior Hip Dislocation–A Case Report. Journal of Orthopaedic Case Reports, 14(12), 52.  [vii] pmc.ncbi.nlm.nih.gov

 

Abu-Nayla, A., Abu-Nayla, A., Nailah, A. A., & Nayla, A. A. A. (2024). Transient Osteoporosis of the Hip: A Case Report. Cureus, 16(12). [viii]  cureus.com

 

Mishra, E., Mohapatra, N. C., Rana, R., Das, S. S., & Mishra, C. (2024). Idiopathic Developmental Dysplasia of Hip in a Female Child with a Rare Epidermal Syndrome-A Case Report. Journal of Orthopaedic Case Reports, 14(12), 89.  [ix]  pmc.ncbi.nlm.nih.gov

 

Kumar, R. K., Awachat, A. M., Sharan, S., Jathkar, A., Naidu, A., & Akhade, N. (2024). Traumatic Hip Dislocation with Proximal Femoral Epiphyseal Fracture in 12-Year-Old Boy: A Case-Based Review. Journal of Orthopaedic Case Reports, 14(12), 180. [x]  pmc.ncbi.nlm.nih.gov

  

Mohamed, H. F., El Deen, A. F. S., Darwish, A. E., Sakr, S. A. E., Abosalem, A. A., & Badawy, E. B. Computed Tomography Evaluation of Multi-Directional Dega Osteotomy in Older Children with DDH (2-10 Years). The Egyptian Journal of Hospital Medicine (October 2024), 97, 4346-4353.  [xi] ejhm.journals.ekb.eg 

 

Jin, T., & Zhang, J. (2024). Concurrent Arthroscopic Revision of the Hip Labral and Anterior Capsular Reconstruction Utilizing Iliotibial Band Autograft. Arthroscopy Techniques, 103366. [xii]  sciencedirect.com

  

Yao, X., Zhao, Q., Ren, T., Wei, G., & Xu, X. (2024). New evidence for the earliest ornithischian dinosaurs from Asia. iScience. 17.12.2024. 111641. [xiii] cell.com

 

Servant, G., Bothorel, H., Pernoud, A., Mayes, S., Fourchet, F., & Christofilopoulos, P. (2024). Six-month rehabilitation following surgical hip dislocation for femoroacetabular impingement restores the preoperative strength of most hip muscles, except for external rotators. Journal of Hip Preservation Surgery, hnae042.  [xiv]  academic.oup.com

 

Migliorini, F., Cocconi, F., Bardazzi, T., Masoni, V., Gardino, V., Pipino, G., & Maffulli, N. (2024). The ligamentum teres and its role in hip arthroscopy for femoroacetabular impingement: a systematic review. Journal of Orthopaedics and Traumatology: Official Journal of the Italian Society of Orthopaedics and Traumatology, 25, 68.  [xv] jorthoptraumatol.springeropen.com


Arkhipov, S.V. The Ninth Month, Eleventh Day: A Reflection on Chapter XXXII of the Book of Genesis. Joensuu: Author’s Edition, 2024.   [Rus.] [xvi] kruglayasvyazka.blogspot.com , roundligament.blogspot.com , Google Play & Google Book  

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

  



[i] In equines manifesting dysplasia within this joint, the detection of bilateral gluteal muscle atrophy is feasible, concomitant with the manifestation of cranial luxation or subluxation of the femoral head [5,6]. The luxation and subluxation coxofemoral include external rotation of the hind limbs, with the femorotibial joint and digits turned laterally, resulting in medial rotation of the hock, resembling a valgus deviation. Pelvic asymmetry is also observed in unilateral cases, along with severe lameness, often preventing support of the pelvic limbs and potentially leading to an inability to walk. Subluxation tends to develop due to chronic injuries to the acetabulum or the ligament of the femoral head [5,6,7].

The chronic lesions in the acetabulum, femoral head and femoral head ligament, as demonstrated later in the anatomopathological examination, point to a continuous subluxation of the joint.

  

[ii] Labral reconstruction options include autografts or allografts 7. … Local autograft sites include the ligamentum teres, indirect head of the rectus femoris, iliotibial band, and hip capsule15,18-23,25.

Among the local autograft sites, the utility of ligamentum teres graft is limited because its harvesting requires an open approach 21,22.

  

[iii] Less than 10% of the femoral head is supplied by the branch of the obturator artery through the ligamentum teres.

 

[iv] Two ligaments aid in coxofemoral (hip) joint stabilization by preventing the separation of the bones (os coxae and femur), The ligament. capitis femoris, also known as the femoral head ligament or round ligament and the transverse acetabular ligament without these ligaments dislocation can occur at the coxofemoral (hip) joint. Furthermore, the coxofemoral joint capsule extends from the neck of the femur to the acetabulum's border [1-4]. 

Ligaments. The Canine coxofemoral joint was stabilized by two ligaments; the transverse acetabular ligament (Fig. 6/2) was a thin band that crossed the acetabular notch and closed the acetabulum's margin, located at the ventrocaudal zone of the acetabulum, and the other ligament was the (femoral head) round ligament (Fig. 6/1) a dense cord of collagenic material that extended from the fovea capitis in the femoral head to the acetabular fossa within the joint capsule.

Fig. 6. shows ligaments that stabilize the Canine hip joint. 1, round (femoral head) ligament extending from the fovea capitis of the femoral head to the acetabular fossa; 2, transverse acetabular ligament closing the acetabular rim; 3, femoral head 4, greater trochanter; 5, shaft of the femur; 6, ilium; 6’, iliac crest; 7, pubis; 8, ischium; 8’, ischial tuberosity; 8’’, ischial arch; 9, obturator foramen; 10, pelvic symphysis; 11, acetabular rim; 12, semilunar facet of the acetabulum. (EJVS is a Free Access journal).

 

[v] In the acetabular fossa (), the ligamentum teres appeared torn and friable. Once the ligamentum teres was debrided, the exostosis was apparent in the anterior and inferior region of the fossa (zone 1; Fig. 4b), but its consistency was softer than the surrounding bone.

Figure 4. Intraoperative hip arthroscopy and postoperative MRI for Patient 3. In all intraoperative images, femoral head cartilage is visible on the right, with the acetabulum on the left. The anterior acetabulum is oriented at the top of the images. (a) View of the acetabular fossa upon initial inspection of the joint after clearing hemarthrosis. (b) View of acetabular fossa once the residual ligamentum teres was removed with a shaver with the exostosis marked by an asterisk. (c) Radiofrequency ablation of the body exostosis was performed with a curved, hip-length arthroscopic radiofrequency ablation device. (d) Articular surface of the acetabulum following curettage, burring, and radiofrequency ablation of the bony exostosis. (e) Postoperative MRI at the 7-month interval with resolution of the previously seen bone marrow edema and synovitis. (Creative Commons Attribution-NonCommercial License, CC BY-NC 4.0)

 

[vi] Likewise, in cats, the artery of the ligament of the head of the femur also contributes to epiphyseal blood supply, and this route may explain why Legg-Calvé-Perthes is not generally observed in cats.

 

[vii] By the age of 10, the artery of ligamentum teres develops sufficiently to provide approximately 20% of the blood supply to the femoral head [9].

9. Trueta J. The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg Br. 1957;39-B:358–94. doi: 10.1302/0301-620X.39B2.358. [DOI] [PubMed] [Google Scholar]


Damage to the ligamentum teres and capsule occurs when the hip dislocates posteriorly. AVN might ensue from this, compromising the femoral head’s blood supply from both the ligamentum teres and the retinacular veins. 


[viii] There were no clear MR signs of osteonecrosis of the femoral head. There was mild to moderate hip joint effusion. The joint space was still preserved. The articular cartilage, transverse ligament, ligamentum teres, and labrum were intact.

 

[ix] Across the iliofemoral Smith-Peterson approach, the iliac apophysis was divided into two halves and dissected laterally. The origins of gluteus medius and gluteus minimus were elevated subperiosteally. The dislocated head was approached after opening the left hip joint capsule. The fibrous tissue, hypertrophied ligamentum teres, and pulvinar fat from the acetabulum were excised. The head was reduced into the native acetabulum and subtrochanteric osteotomy was done.

  

[x] A safe surgical dislocation of the hip (Ganz dislocation) was achieved by flexing and externally rotating the hip followed by cutting the ligamentum teres with curved scissors. The fracture epiphysis was temporarily fixed with a K-wire and then secured with two Herbert screws. 

 

[xi] The capsule was initially exposed, sliced parallel to the rim of the acetabulum and approximately 1 cm distal to it, and then cut at a right angle to the first incision to create a T-shaped incision. The ligamentum teres was found, removed from the head, and secured using Kocher forceps to identify the site of the actual acetabulum. Using scissors, it was separated from the true acetabulum. A tiny nibbler was used to remove the hypertrophied fibro-fatty tissue (pulvinar) till the articular cartilage was seen to clean the acetabular floor. Sectioning the transverse acetabular ligament made head reduction easier.

 

[xii] Many auto- or allograft options now exist for labral reconstruction, including ITB, semitendinosus, indirect head of the rectus femoris tendon, gracilis, peroneus brevis, labrum allograft, meniscus allograft, and ligamentum teres. 16, 17

16. M.S. Abdelaal, R.M. Sutton, C. Atillasoy, J. Parvizi Allograft reconstruction of acetabular labrum has comparable outcomes to labral refixation J Hip Preserv Surg, 10 (2023), pp. 24-30

17. S.F. DeFroda, B. Crist, J.L. Cook Arthroscopic hip labral reconstruction with fresh meniscal allograft Arthrosc Tech, 12 (2023), pp. e813-e821

 

[xiii] On the posterior surface, lateral to the femoral head, there is a broad sulcus for attaching the ligament femoral capitalis, forming a broad concavity in proximal 87 view (Fig. 2B, E).

 

[xiv] Femoroacetabular impingement syndrome (FAIS) is a motion-related disorder of the hip joint in which abnormal contact between the acetabulum and the proximal femur can lead to hip pain and is associated with clinical and radiologic signs [1]. … In cases where nonsurgical management of FAIS fails, surgical intervention may be indicated to treat the abnormal bone morphology, either by arthroscopy or surgical hip dislocation (SHD), both of which have shown satisfactory short- and long-term outcomes [4-7].

The hip was dislocated in flexion–external rotation, and an inspection of the central compartment was performed to look for possible labral or articular cartilage lesions. The status of the acetabular and cephalic cartilage was also assessed. The hip was dislocated in flexion–external rotation, and an inspection of the central compartment was performed to look for possible labral or articular cartilage lesions. The status of the acetabular and cephalic cartilage was also assessed. … The round ligament was excised and then an osteochondroplasty of the head–neck junction was performed while respecting the retinacular vessels. The hip was thereafter reduced and its stability as well as correct mobility were verified (approximately 30° of internal rotation in flexion). 

 

[xv] Conclusions. An intact or torn ligamentum teres managed with debridement does not influence the postoperative PROMs in patients undergoing arthroscopic management for FAI.


[xvi] The monograph is dedicated to the oldest mention of LCF injury and the fate of the first patient with this pathology.


 

Comments

Popular posts from this blog

INFERIOR PORTAL FOR HIP ARTHROSCOPY

  Combined PDF version of the article: Arkhipov SV. Arkhipov SV. Inferior Portal for Hip A rthroscopy: A Pilot Experimental Study. This page contains a photocopy of the publication. The links for downloading the PDF version and the addresses of the online versions are given below.  The original in Russian is available at the link: Нижний портал для артроскопии тазобедренного сустава . 

Inferior Portal. Part 1.

  Original in Russian is available at the link:  Нижний портал. Часть 1.  below is a machine translation edited by a non-native speaker  ( version dated 03/02/2025 ) .     INFERIOR PORTAL FOR HIP ARTHROSCOPY: A PILOT STUDY PART 1. Background and Hypothesis Arkhipov S.V., Independent Researcher, Joensuu, Finland Abstract: The article presents, theoretically and graphically substantiates the technique of a new arthroscopic approach to the central compartment of the hip joint. It is proposed to introduce the optical system of the arthroscope from below through the acetabular notch without traction. Similar approaches were used for puncture, arthroscopy, arthrography, and arthrotomy of the hip joint. Diagnostics using the described lower portal will exclude complications caused by distraction of the leg and compression of the perineal support during surgery.   CONTENTS PART 1. Background and Hypothesis [1] . Introduction [2] . Passage through t...

LCF in 2025 (February)

  LCF in 2025 ( February ) Jones, H., Chang, I. Y. J., Chen, D., Kalia, V., Alizai, H., Wilson, P. L., & Ellis, H. B. (2025). Prevalence of Asymptomatic Acetabular Labrum Abnormalities in the Active Pediatric Population. Journal of Pediatric Orthopaedics , 10-1097.   [i]   journals.lww.com   Shihab, W., Luck, C., Oakley, J., & McClincy, M. (2025). Anteroinferior iliac spine osteoplasty at the time of periacetabular osteotomy helps preserve preoperative range of motion. Journal of Hip Preservation Surgery , hnaf007.  [ii]   academic.oup.com   Meso, J. G., Choiniere, J. N., Baiano, M. A., Brusatte, S. L., Canale, J. I., Salgado, L., ... & Pittman, M. (2025). New information on Bonapartenykus (Alvarezsauridae: Theropoda) from the Allen Formation (middle Campanian-lower Maastrichtian) of Río Negro Province, Patagonia, Argentina clarifies the Patagonykinae body plan. PloS one , 20 (1), e0308366.  [iii]   journals.plos.org   Costa,...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», February 2025

    SCIENTIFIC THEMATIC ONLINE JOURNAL « About Round Ligament of Femur » February, 2025 The publication is dedicated to the ligamentum capitis femoris (LCF) and related topics.   About the Journal The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. Updates: As new materials are prepared. Purpose: Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal: Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint.   Announcements 25.02.2025 A Facebook group « LIGAMENTUM CAPITIS FEMORIS »  has been created.  26.02.2025 The scientific blog « About Round Ligament of Femur » has been transformed into an online journal of the same name.   Surgical Treatment INFERIOR P...

2020ArkhipovSV_ProlyginaIV

  Ancient Textual Sources on Ligamentum Teres: Context and Transmission S.V. Arkhipov, I.V. Prolygina   KEYWORDS: ancient medicine; ancient traumatology; Galen; Hippocrates; hip joint; ligamentum capitis femoris; ligament of head of femur; ligamentum teres. SUMMARY Background. One of the least researched anatomical structures of the human body is the ligament of head of femur, most often referred to as ligamentum teres. The history of the nomination of this term, medical contexts of its use, the etymology and the first synonyms (Figure 1) are not sufficiently understood. Purpose. The purpose of the article is to present the most complete collection of evidence from ancient medical authors about the term ligamentum teres, trace the history of its nomination and analyze the gradual changes in the level of knowledge about the anatomy, mechanical and geometric properties of this structure, its pathology and treatment methods. Methods. The study is based on an inter...

2012MansmannKA

  Invention (Patent Application Publication): Mansmann KA. Tendon-sparing implants for arthroscopic replacement of hip cartilage. WO2012162571A1 (2012).  The original text of the document contained defects.   WO2012162571A1S US Inventor: Kevin A. Mansmann Worldwide applications 2012 WO Application PCT/US2012/039481 events: 2012-05-24 Application filed by Mansmann Kevin A 2012-11-29 Publication of WO2012162571A1   Tendon-sparing implants for arthroscopic replacement of hip cartilage Kevin A. Mansmann   Abstract Surgical implant devices are disclosed which will allow completely arthroscopic resurfacing of the acetabular socket, and the femoral head, in hip joints, in both humans, and in animals such as dogs. Such devices, made of flexible polymers with smooth articulating surfaces and porous anchoring surfaces, can be provided with centered openings, to allow a surgeon to spare the major ligament (the ligamentum teres) which connects the femoral head to the pelv...

Inferior Portal. Part 2.

  Original in Russian is available at the link:  Нижний портал. Часть 2.  below is a machine translation edited by a non-native speaker.     INFERIOR PORTAL FOR HIP ARTHROSCOPY: A PILOT STUDY PART 2.  Inferior Portal Prototypes Arkhipov S.V., Independent Researcher, Joensuu, Finland   CONTENTS PART 1.  Background and Hypothesis [1] . Introduction [2] .  Passage through the Inferior Portal [3] .  Main Advantages of the Proposed Technique [4] .  Specific Risks of the Proposed Technique [5] .  Main Limitations of the Proposed Technique [6] . References (Part 1)   PART 2. Inferior Portal Prototypes [7] . Open Reduction [8] .  Puncture and Arthrography [9] . Arthroscopy and Debridement [10] . References (Part 2)   [7] . Open  R eduction   Our idea to reduce the trauma of hip joint surgery through an inferior approach has a rich history. In the spring of 1907, Professor Karl Rudolf Ludloff (1864-1945, photo )...

1795LevelingHM

Fragment of the book Leveling HM. Anatomie des Menschen (1795). The author mentions ligamentum capitis femoris (LCF) using a rare synonym in German: runden Hängeband (suspensory ligament). Quote p . 258, second paragraph . Translation [Eng] The head has a strong bulge upwards which gradually decreases towards the bottom. Its position is oblique, according to the oblique position of the neck. The bulge represents only three parts of a sphere, and the whole is covered with cartilage in its fresh state. Slightly below the middle of this bulge is a strong impression from the round suspensory ligament (Lig. teres). Very clear traces indicate that it was a point of attachment. External links Leveling HM. Anatomie des Menschen: zum Leitfaden für angehende Aerzte und Wundärzte eingerichtet. Vorläufige Begriffe der Anatomie. Knochenlehre. Erster Theil. Erlangen: in der Waltherschen Buchhandlung, 1795. [ books.google ] Authors & Affiliations Heinrich Maria Leveling (Heinrich Maria von Leve...

1847FroriepR

  The author, one of the first pathologists in Europe, the first to draw changes in the ligamentum capitis femoris (LCF) in the consequences of traumatic and congenital hip dislocation. Froriep R. Tafeln über die Luxationen: aus den "Chirurgischen Kupfertafeln" einer auserlesenen Sammlung der nöthigsten Abbildungen von äusselich sichtbaren Krankheitsformen, anatomischen Präparaten, Instrumenten, Bandagen und Operations-Verfahren au dem Gebiete der Chirurgie, zum Gebrauch für praktische Chirurgen zusammengestellt. Meimar: Landes-Industrie-Comptoir, 1847. [fragments]   Luxatio. XIII. 2. Ansicht von anatomischen Präparaten über verschiedene nicht eingerichtete Schenkel Luxationen. Fig. 3. c) Schenkelknochen; d) Großer Trochanter; f) Kopf des Schenkels; g) Neues Kapselligament; h) Abgerissenes ligamentum teres. Dislocation. XIII. 2. View of anatomical preparations of various unset dislocations of the hip. Fig. 3...

50-135Akiva ben Joseph

  Saying of Akiva ben Joseph extracted from the book  Mekilta de-Rabbi Yishmael  (ca. 200). Tractate was written in Israel, and interprets about a quarter of the chapters in Exodus. The rabbi mentions the ligamentum capitis femoris (LCF) of the animal. See our commentary at the link: 50-135Akiva ben Joseph [Rus]. Quote [Heb] Tractate Kaspa. 5:19 (original source:  sefaria.org ) Translation Quote [Eng] Tractate Kaspa. 5:19 R. Akiva says: It need not be written (that eating meat and milk is forbidden), for it follows a fortiori, viz.: If the thigh sinew (gid hanasheh), which is not forbidden to be cooked, is forbidden to be eaten, then meat and milk, which is forbidden to be cooked, how much more so should it be forbidden to be eaten! (Transl. by Rabbi_Shraga_Silverstein; original source:  sefaria.org ) External links Mekilta de-Rabbi Yishmael .  ca. 200 . [ sefaria.org  ,  jewishencyclopedia.com ] Authors & Affiliations Akiva ben Joseph (Rabbi...