Skip to main content

LCF in 2024 (December)


Publications about the LCF 2024 (December) 

  

Kneipp, M. L. A., Sousa, L. N., Cota, L. O., Malacarne, B. D., Winter, I. C., Santana, C. H., ... & Carvalho, A. M. (2024). Bilateral coxofemoral dysplasia in a Mangalarga Marchador foal. Journal of Equine Veterinary Science, 105253. [i]  sciencedirect.com

 

Siddiq, B. S., Gillinov, S. M., Cherian, N. J., & Martin, S. D. (2024). Arthroscopic Reconstruction of the Acetabular Labrum Using an Autograft Hip Capsule. JBJS Essential Surgical Techniques,14(4), e23.  [ii]  pmc.ncbi.nlm.nih.gov

 

Kraft, D. B., Delahay, J. N., & Murray, R. S. (2024). Pediatric Orthopedics. In Essentials of Orthopedic Surgery (pp. 139-185). Cham: Springer Nature Switzerland.  [iii] link.springer.com

 

Gebriel, M. E., Farid, M., Mostafa, A., Shaker, N., Abouelela, Y., & Noor, N. (2024). The Surgical Anatomy of Canine Coxofemoral Joint and Innovative Educational Models as El-Nady Technique and 3D Printing. Egyptian Journal of Veterinary Sciences, 1-11.  [iv]  ejvs.journals.ekb.eg   researchgate.net

 

Beyer, R. S., Steiner, Q., Hennessy, D. W., Rosas, H. G., Goodspeed, D. C., & Spiker, A. M. (2024). Assessment and management of periacetabular aneurysmal bone cysts—a series of four cases. Journal of Hip Preservation Surgery, hnae040. [v] academic.oup.com

 

Simpson, M., Lean, F., Marti-Garcia, B., & Meeson, R. (2024). Chronic progressive left hind limb lameness in an 11-month-old intact female Labrador Retriever Poodle cross. Journal of the American Veterinary Medical Association, 1(aop), 1-3. [vi] avmajournals.avma.org

 

Paul, N., Sharma, A., Sarkar, B., Bhakhar, A., Yadav, A. K., & Azam, M. Q. (2024). Bilateral Traumatic Posterior Hip Dislocation–A Case Report. Journal of Orthopaedic Case Reports, 14(12), 52.  [vii] pmc.ncbi.nlm.nih.gov

 

Abu-Nayla, A., Abu-Nayla, A., Nailah, A. A., & Nayla, A. A. A. (2024). Transient Osteoporosis of the Hip: A Case Report. Cureus, 16(12). [viii]  cureus.com

 

Mishra, E., Mohapatra, N. C., Rana, R., Das, S. S., & Mishra, C. (2024). Idiopathic Developmental Dysplasia of Hip in a Female Child with a Rare Epidermal Syndrome-A Case Report. Journal of Orthopaedic Case Reports, 14(12), 89.  [ix]  pmc.ncbi.nlm.nih.gov

 

Kumar, R. K., Awachat, A. M., Sharan, S., Jathkar, A., Naidu, A., & Akhade, N. (2024). Traumatic Hip Dislocation with Proximal Femoral Epiphyseal Fracture in 12-Year-Old Boy: A Case-Based Review. Journal of Orthopaedic Case Reports, 14(12), 180. [x]  pmc.ncbi.nlm.nih.gov

  

Mohamed, H. F., El Deen, A. F. S., Darwish, A. E., Sakr, S. A. E., Abosalem, A. A., & Badawy, E. B. Computed Tomography Evaluation of Multi-Directional Dega Osteotomy in Older Children with DDH (2-10 Years). The Egyptian Journal of Hospital Medicine (October 2024), 97, 4346-4353.  [xi] ejhm.journals.ekb.eg 

 

Jin, T., & Zhang, J. (2024). Concurrent Arthroscopic Revision of the Hip Labral and Anterior Capsular Reconstruction Utilizing Iliotibial Band Autograft. Arthroscopy Techniques, 103366. [xii]  sciencedirect.com

  

Yao, X., Zhao, Q., Ren, T., Wei, G., & Xu, X. (2024). New evidence for the earliest ornithischian dinosaurs from Asia. iScience. 17.12.2024. 111641. [xiii] cell.com

 

Servant, G., Bothorel, H., Pernoud, A., Mayes, S., Fourchet, F., & Christofilopoulos, P. (2024). Six-month rehabilitation following surgical hip dislocation for femoroacetabular impingement restores the preoperative strength of most hip muscles, except for external rotators. Journal of Hip Preservation Surgery, hnae042.  [xiv]  academic.oup.com

 

Migliorini, F., Cocconi, F., Bardazzi, T., Masoni, V., Gardino, V., Pipino, G., & Maffulli, N. (2024). The ligamentum teres and its role in hip arthroscopy for femoroacetabular impingement: a systematic review. Journal of Orthopaedics and Traumatology: Official Journal of the Italian Society of Orthopaedics and Traumatology, 25, 68.  [xv] jorthoptraumatol.springeropen.com


Arkhipov, S.V. The Ninth Month, Eleventh Day: A Reflection on Chapter XXXII of the Book of Genesis. Joensuu: Author’s Edition, 2024.   [Rus.] [xvi] kruglayasvyazka.blogspot.com  roundligament.blogspot.com  Google Play & Google Book

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

  



[i] In equines manifesting dysplasia within this joint, the detection of bilateral gluteal muscle atrophy is feasible, concomitant with the manifestation of cranial luxation or subluxation of the femoral head [5,6]. The luxation and subluxation coxofemoral include external rotation of the hind limbs, with the femorotibial joint and digits turned laterally, resulting in medial rotation of the hock, resembling a valgus deviation. Pelvic asymmetry is also observed in unilateral cases, along with severe lameness, often preventing support of the pelvic limbs and potentially leading to an inability to walk. Subluxation tends to develop due to chronic injuries to the acetabulum or the ligament of the femoral head [5,6,7].

The chronic lesions in the acetabulum, femoral head and femoral head ligament, as demonstrated later in the anatomopathological examination, point to a continuous subluxation of the joint.

  

[ii] Labral reconstruction options include autografts or allografts 7. … Local autograft sites include the ligamentum teres, indirect head of the rectus femoris, iliotibial band, and hip capsule15,18-23,25.

Among the local autograft sites, the utility of ligamentum teres graft is limited because its harvesting requires an open approach 21,22.

  

[iii] Less than 10% of the femoral head is supplied by the branch of the obturator artery through the ligamentum teres.

 

[iv] Two ligaments aid in coxofemoral (hip) joint stabilization by preventing the separation of the bones (os coxae and femur), The ligament. capitis femoris, also known as the femoral head ligament or round ligament and the transverse acetabular ligament without these ligaments dislocation can occur at the coxofemoral (hip) joint. Furthermore, the coxofemoral joint capsule extends from the neck of the femur to the acetabulum's border [1-4]. 

Ligaments. The Canine coxofemoral joint was stabilized by two ligaments; the transverse acetabular ligament (Fig. 6/2) was a thin band that crossed the acetabular notch and closed the acetabulum's margin, located at the ventrocaudal zone of the acetabulum, and the other ligament was the (femoral head) round ligament (Fig. 6/1) a dense cord of collagenic material that extended from the fovea capitis in the femoral head to the acetabular fossa within the joint capsule.

Fig. 6. shows ligaments that stabilize the Canine hip joint. 1, round (femoral head) ligament extending from the fovea capitis of the femoral head to the acetabular fossa; 2, transverse acetabular ligament closing the acetabular rim; 3, femoral head 4, greater trochanter; 5, shaft of the femur; 6, ilium; 6’, iliac crest; 7, pubis; 8, ischium; 8’, ischial tuberosity; 8’’, ischial arch; 9, obturator foramen; 10, pelvic symphysis; 11, acetabular rim; 12, semilunar facet of the acetabulum. (EJVS is a Free Access journal).

 

[v] In the acetabular fossa (), the ligamentum teres appeared torn and friable. Once the ligamentum teres was debrided, the exostosis was apparent in the anterior and inferior region of the fossa (zone 1; Fig. 4b), but its consistency was softer than the surrounding bone.

Figure 4. Intraoperative hip arthroscopy and postoperative MRI for Patient 3. In all intraoperative images, femoral head cartilage is visible on the right, with the acetabulum on the left. The anterior acetabulum is oriented at the top of the images. (a) View of the acetabular fossa upon initial inspection of the joint after clearing hemarthrosis. (b) View of acetabular fossa once the residual ligamentum teres was removed with a shaver with the exostosis marked by an asterisk. (c) Radiofrequency ablation of the body exostosis was performed with a curved, hip-length arthroscopic radiofrequency ablation device. (d) Articular surface of the acetabulum following curettage, burring, and radiofrequency ablation of the bony exostosis. (e) Postoperative MRI at the 7-month interval with resolution of the previously seen bone marrow edema and synovitis. (Creative Commons Attribution-NonCommercial License, CC BY-NC 4.0)

 

[vi] Likewise, in cats, the artery of the ligament of the head of the femur also contributes to epiphyseal blood supply, and this route may explain why Legg-Calvé-Perthes is not generally observed in cats.

 

[vii] By the age of 10, the artery of ligamentum teres develops sufficiently to provide approximately 20% of the blood supply to the femoral head [9].

9. Trueta J. The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg Br. 1957;39-B:358–94. doi: 10.1302/0301-620X.39B2.358. [DOI] [PubMed] [Google Scholar]


Damage to the ligamentum teres and capsule occurs when the hip dislocates posteriorly. AVN might ensue from this, compromising the femoral head’s blood supply from both the ligamentum teres and the retinacular veins. 


[viii] There were no clear MR signs of osteonecrosis of the femoral head. There was mild to moderate hip joint effusion. The joint space was still preserved. The articular cartilage, transverse ligament, ligamentum teres, and labrum were intact.

 

[ix] Across the iliofemoral Smith-Peterson approach, the iliac apophysis was divided into two halves and dissected laterally. The origins of gluteus medius and gluteus minimus were elevated subperiosteally. The dislocated head was approached after opening the left hip joint capsule. The fibrous tissue, hypertrophied ligamentum teres, and pulvinar fat from the acetabulum were excised. The head was reduced into the native acetabulum and subtrochanteric osteotomy was done.

  

[x] A safe surgical dislocation of the hip (Ganz dislocation) was achieved by flexing and externally rotating the hip followed by cutting the ligamentum teres with curved scissors. The fracture epiphysis was temporarily fixed with a K-wire and then secured with two Herbert screws. 

 

[xi] The capsule was initially exposed, sliced parallel to the rim of the acetabulum and approximately 1 cm distal to it, and then cut at a right angle to the first incision to create a T-shaped incision. The ligamentum teres was found, removed from the head, and secured using Kocher forceps to identify the site of the actual acetabulum. Using scissors, it was separated from the true acetabulum. A tiny nibbler was used to remove the hypertrophied fibro-fatty tissue (pulvinar) till the articular cartilage was seen to clean the acetabular floor. Sectioning the transverse acetabular ligament made head reduction easier.

 

[xii] Many auto- or allograft options now exist for labral reconstruction, including ITB, semitendinosus, indirect head of the rectus femoris tendon, gracilis, peroneus brevis, labrum allograft, meniscus allograft, and ligamentum teres. 16, 17

16. M.S. Abdelaal, R.M. Sutton, C. Atillasoy, J. Parvizi Allograft reconstruction of acetabular labrum has comparable outcomes to labral refixation J Hip Preserv Surg, 10 (2023), pp. 24-30

17. S.F. DeFroda, B. Crist, J.L. Cook Arthroscopic hip labral reconstruction with fresh meniscal allograft Arthrosc Tech, 12 (2023), pp. e813-e821

 

[xiii] On the posterior surface, lateral to the femoral head, there is a broad sulcus for attaching the ligament femoral capitalis, forming a broad concavity in proximal 87 view (Fig. 2B, E).

 

[xiv] Femoroacetabular impingement syndrome (FAIS) is a motion-related disorder of the hip joint in which abnormal contact between the acetabulum and the proximal femur can lead to hip pain and is associated with clinical and radiologic signs [1]. … In cases where nonsurgical management of FAIS fails, surgical intervention may be indicated to treat the abnormal bone morphology, either by arthroscopy or surgical hip dislocation (SHD), both of which have shown satisfactory short- and long-term outcomes [4-7].

The hip was dislocated in flexion–external rotation, and an inspection of the central compartment was performed to look for possible labral or articular cartilage lesions. The status of the acetabular and cephalic cartilage was also assessed. The hip was dislocated in flexion–external rotation, and an inspection of the central compartment was performed to look for possible labral or articular cartilage lesions. The status of the acetabular and cephalic cartilage was also assessed. … The round ligament was excised and then an osteochondroplasty of the head–neck junction was performed while respecting the retinacular vessels. The hip was thereafter reduced and its stability as well as correct mobility were verified (approximately 30° of internal rotation in flexion). 

 

[xv] Conclusions. An intact or torn ligamentum teres managed with debridement does not influence the postoperative PROMs in patients undergoing arthroscopic management for FAI.


[xvi] The monograph is dedicated to the oldest mention of LCF injury and the fate of the first patient with this pathology.


 

Comments

Popular posts from this blog

NEWS

  New publications of our resource ( section started June 04, 2024 ) January 11, 2025 Acetabular Canal.  Part 1.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions. See also  Part 2  and  Part 3 .  January 10, 2025 1877MorrisH An excerpt from an article noting that the LCF is stretched during flexion, adduction, external rotation, and is always torn during hip dislocations. January 8, 2025 1877BrookeC  Report and discussion on Henry Morris's paper Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint,  with  mentioning the role played by LCF.   January 7, 2025 Tweet of January 7, 2025   1898AshhurstJ The author discusses the function of the LCF as a supporting element of the body, its role in the development of deformity of the hip joint, reducing pressure and stress in the femoral head. January 4, 2025 2024Migliorin...

1917TrevesF_MackenzieC

  Fragments from the book Treves F, Keith A, Mackenzie C. Surgical Applied Anatomy, 7th ed. (1917). The author discusses the strength and significance of the ligamentum capitis femoris (LCF) and its changes in hip dislocations and dysplasia.   Quote pp. 542-543 3. THE HIP-JOINT … The manner in which the various movements at the hip are limited may be briefly expressed as follows: The limit of every natural movement is fixed by the extensibility of the muscles which surround a joint. That is readily seen at the hip-joint, for when the knee is extended, and the hamstring muscles thus tightened, flexion at the hip is limited long before the ligaments become tense. Ligaments only come into play when the muscular defence of the joint breaks down. Flexion, when the knee is bent, is limited by the contact of the soft parts of the groin. Extension, by the ilio-psoas, rectus femoris, and the ilio-femoral or Y -ligament. Abduction, by the adductor mass of muscles and the pubo-capsular l...

1857RichetA

  Fragments of the book Richet A. Traité pratique d' Anatomie medico-chirurgicale (1857) are devoted to the anatomy of the ligamentum capitis femoris (LCF). The author believes that the vessels passing through the LCF are sufficient to supply blood to the femoral head. The text is prepared for machine translation using a service built into the blog from Google or your web browser. In some cases, we have added links to quotations about LCF available on our resource, as well as to publications posted on the Internet.   Quote pp. 922-923 Articulation coxo-femorale. Cette articulation, qui appartient à la classe des énarthroses dont elle représente le type, a été l'objet de travaux importants de la part des physiologistes et des chirurgiens, et c'est aux frères Weber et à M. Malgaigne, plutôt qu'aux anatomistes purs, qu'on doit d'avoir mis en lumière un grand nombre des faits qui vont suivre et qui éclairent des questions pathologiques avant eux restées insol...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An instrument of knowledge and innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     r                   T                   ...

LCF in 2024 (November)

Publications about the LCF 2024  (November) .   Mohammed, C., Kong, R., Kuruba, V., Rai, V., & Munazzam, S. W. (2024). Outcomes and complications of hip arthroscopy for femoroacetabular impingement syndrome: A narrative review. Journal of Clinical Orthopaedics and Trauma , 102797. [i]   journal-cot.com   Shah, M. Q. A., Kiani, R. B., Ahmad, A., Malik, H. A., Rehman, J. U., & Anwar, Z. (2024). Children with Developmental Dysplasia of Hip-Our Experience of Outcome at a Tertiary Care Centre. Pakistan Armed Forces Medical Journal , 74 (5 ), 1236.   [ii]    scholar.google.com   Graf, R. Sonography of the Infant’s Hip: Principles, implementation and therapeutic consequences . Springer Nature. 2024.   [iii]    books.google   Sáenz, J. F. C., Carrera, E. T., Gutiérrez, R. A., & De La Ossa, L. (2024). Capsular Traction-Assisted Hip Arthroscopy: An Alternative to T-Capsulotomy for Osteochondroplasty. Arthros...

COPYRIGHT

  If not stated otherwise, all content on this blog, including text, graphics, logos, button icons, images, photographs, tables, diagrams, charts, videos, is the property of the resource administration, and is protected by copyright laws. The compilation of blog content is also the exclusive property of its administration and is protected by relevant legislation. Unless expressly specified and written permission is granted by the blog administration, any use of its materials for commercial purposes or posting on other platforms is prohibited. If you believe that the text, images, or videos published in the blog violate your copyrights, we kindly ask you to send us a notification requesting the removal of the material, accompanied by a reasonable explanation. Please submit a notice of copyright infringement that you have identified in writing to the following email address: archipovlcfbooks&gmail.com If you believe that the information posted on the blog violates the rig...

1753TarinP

  Fragments from the book Tarin P. Ostéo-graphie (1753). The author notes the localization of ligamentum capitis femoris (LCF) and uses synonyms: ligament rond, ligamentum teres capitis femoris. The text is prepared for machine translation using a service built into the blog from Google or your web browser. Quote p. 24 Les Ligamens de l'extrémité inférieure sont, 1°. la Membrane capsulaire, &c. de la cavité cotyloïde, le Ligament rond, l'Appareil ligamenteux propre à cette cavité; le Ligament transveríal interne de son bord, le transversal externe, les deux Ligamens glanduleux; … Quote p. 54. Illæ tres offeæ portiones simul unitæ Cavitatem cotyloïdeam q.t. a. constituunt, in qua occurrit Foveols h. glandulas synoviales articulationis excipiens, cuique sesc inserit ligamentum teres capitis femoris, &c. Vid. t. u. v. TAB. I. II. III. External links Tarin P. Ostéo-graphie, ou Description des os de l'adulte, du foetus, &c. Precedée d'une introduction a l'etu...

1877BrookeC

  Report by Brooke C. and discussion of the article Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint. By Henry Morris. M.A., M.B. (1877). In the discussion, Dr. Barwell remarked that: «He agreed with Mr. Morris in regarding the ligamentum teres as of little importance in the prevention of dislocation; it probably did little more than protect the vessels passing to the head of the bone. He saw a case some years ago, in which there was congenital absence of the ligamentum teres; but he had no reason for believing that the man was more liable to dislocation of the femur than other persons.» The author of the article, Henry Morris, suggested that Malgaigne «... did not attach much importance to the ligamentum teres; and believed that it had no power to hold the bone in its place.».   ROYAL MEDICAL AND CHIRURGICAL SOCIETY. TUESDAY, FEBRUARY I3TH, 1877. CHARLES BROOKE, F.R.C.S., F.R.S., Vice-President, in the Chair. D...

398-405Jerome of Stridon

  Fragments of the Book of Genesis translated by Jerome of Stridon (398-405). The Latin text contains mentioned to ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 398-405Jerome of Stridon [Rus]. Quote [Lat] Genesis 32:25,32 25. Qui cùm videret quòd eum sperare non posset, tetigit neruum femoris eius, & statim emarcuit. (original source: 1572 MontanoBA , p. 110) 32. Quá ob causam non comedunt neruú filij Israel, qui emarcuit in femore Iacob, vsq; in præsentem diem, eo quòd tetigerit neruú femoris eius, & obstupuerit. (original source: 1572 MontanoBA , p. 112) Translation [Eng] Genesis 32:25,32 25. But when he saw that he could not prevail against him, he touched the sinew of his thigh, and immediately it withered. (original source: 1572 MontanoBA , p. 110; our translation) 32. For this reason, the children of Israel do not eat the sinew that withered in Jacob's thigh to this day, because he touched the sinew of his thigh and dam...