Skip to main content

LCF in 2024 (December)


Publications about the LCF 2024 (December) 

  

Kneipp, M. L. A., Sousa, L. N., Cota, L. O., Malacarne, B. D., Winter, I. C., Santana, C. H., ... & Carvalho, A. M. (2024). Bilateral coxofemoral dysplasia in a Mangalarga Marchador foal. Journal of Equine Veterinary Science, 105253. [i]  sciencedirect.com

 

Siddiq, B. S., Gillinov, S. M., Cherian, N. J., & Martin, S. D. (2024). Arthroscopic Reconstruction of the Acetabular Labrum Using an Autograft Hip Capsule. JBJS Essential Surgical Techniques,14(4), e23.  [ii]  pmc.ncbi.nlm.nih.gov

 

Kraft, D. B., Delahay, J. N., & Murray, R. S. (2024). Pediatric Orthopedics. In Essentials of Orthopedic Surgery (pp. 139-185). Cham: Springer Nature Switzerland.  [iii] link.springer.com

 

Gebriel, M. E., Farid, M., Mostafa, A., Shaker, N., Abouelela, Y., & Noor, N. (2024). The Surgical Anatomy of Canine Coxofemoral Joint and Innovative Educational Models as El-Nady Technique and 3D Printing. Egyptian Journal of Veterinary Sciences, 1-11.  [iv]  ejvs.journals.ekb.eg   researchgate.net

 

Beyer, R. S., Steiner, Q., Hennessy, D. W., Rosas, H. G., Goodspeed, D. C., & Spiker, A. M. (2024). Assessment and management of periacetabular aneurysmal bone cysts—a series of four cases. Journal of Hip Preservation Surgery, hnae040. [v] academic.oup.com

 

Simpson, M., Lean, F., Marti-Garcia, B., & Meeson, R. (2024). Chronic progressive left hind limb lameness in an 11-month-old intact female Labrador Retriever Poodle cross. Journal of the American Veterinary Medical Association, 1(aop), 1-3. [vi] avmajournals.avma.org

 

Paul, N., Sharma, A., Sarkar, B., Bhakhar, A., Yadav, A. K., & Azam, M. Q. (2024). Bilateral Traumatic Posterior Hip Dislocation–A Case Report. Journal of Orthopaedic Case Reports, 14(12), 52.  [vii] pmc.ncbi.nlm.nih.gov

 

Abu-Nayla, A., Abu-Nayla, A., Nailah, A. A., & Nayla, A. A. A. (2024). Transient Osteoporosis of the Hip: A Case Report. Cureus, 16(12). [viii]  cureus.com

 

Mishra, E., Mohapatra, N. C., Rana, R., Das, S. S., & Mishra, C. (2024). Idiopathic Developmental Dysplasia of Hip in a Female Child with a Rare Epidermal Syndrome-A Case Report. Journal of Orthopaedic Case Reports, 14(12), 89.  [ix]  pmc.ncbi.nlm.nih.gov

 

Kumar, R. K., Awachat, A. M., Sharan, S., Jathkar, A., Naidu, A., & Akhade, N. (2024). Traumatic Hip Dislocation with Proximal Femoral Epiphyseal Fracture in 12-Year-Old Boy: A Case-Based Review. Journal of Orthopaedic Case Reports, 14(12), 180. [x]  pmc.ncbi.nlm.nih.gov

  

Mohamed, H. F., El Deen, A. F. S., Darwish, A. E., Sakr, S. A. E., Abosalem, A. A., & Badawy, E. B. Computed Tomography Evaluation of Multi-Directional Dega Osteotomy in Older Children with DDH (2-10 Years). The Egyptian Journal of Hospital Medicine (October 2024), 97, 4346-4353.  [xi] ejhm.journals.ekb.eg 

 

Jin, T., & Zhang, J. (2024). Concurrent Arthroscopic Revision of the Hip Labral and Anterior Capsular Reconstruction Utilizing Iliotibial Band Autograft. Arthroscopy Techniques, 103366. [xii]  sciencedirect.com

  

Yao, X., Zhao, Q., Ren, T., Wei, G., & Xu, X. (2024). New evidence for the earliest ornithischian dinosaurs from Asia. iScience. 17.12.2024. 111641. [xiii] cell.com

 

Servant, G., Bothorel, H., Pernoud, A., Mayes, S., Fourchet, F., & Christofilopoulos, P. (2024). Six-month rehabilitation following surgical hip dislocation for femoroacetabular impingement restores the preoperative strength of most hip muscles, except for external rotators. Journal of Hip Preservation Surgery, hnae042.  [xiv]  academic.oup.com

 

Migliorini, F., Cocconi, F., Bardazzi, T., Masoni, V., Gardino, V., Pipino, G., & Maffulli, N. (2024). The ligamentum teres and its role in hip arthroscopy for femoroacetabular impingement: a systematic review. Journal of Orthopaedics and Traumatology: Official Journal of the Italian Society of Orthopaedics and Traumatology, 25, 68.  [xv] jorthoptraumatol.springeropen.com


Arkhipov, S.V. The Ninth Month, Eleventh Day: A Reflection on Chapter XXXII of the Book of Genesis. Joensuu: Author’s Edition, 2024.   [Rus.] [xvi] kruglayasvyazka.blogspot.com , roundligament.blogspot.com , Google Play & Google Book  

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

  



[i] In equines manifesting dysplasia within this joint, the detection of bilateral gluteal muscle atrophy is feasible, concomitant with the manifestation of cranial luxation or subluxation of the femoral head [5,6]. The luxation and subluxation coxofemoral include external rotation of the hind limbs, with the femorotibial joint and digits turned laterally, resulting in medial rotation of the hock, resembling a valgus deviation. Pelvic asymmetry is also observed in unilateral cases, along with severe lameness, often preventing support of the pelvic limbs and potentially leading to an inability to walk. Subluxation tends to develop due to chronic injuries to the acetabulum or the ligament of the femoral head [5,6,7].

The chronic lesions in the acetabulum, femoral head and femoral head ligament, as demonstrated later in the anatomopathological examination, point to a continuous subluxation of the joint.

  

[ii] Labral reconstruction options include autografts or allografts 7. … Local autograft sites include the ligamentum teres, indirect head of the rectus femoris, iliotibial band, and hip capsule15,18-23,25.

Among the local autograft sites, the utility of ligamentum teres graft is limited because its harvesting requires an open approach 21,22.

  

[iii] Less than 10% of the femoral head is supplied by the branch of the obturator artery through the ligamentum teres.

 

[iv] Two ligaments aid in coxofemoral (hip) joint stabilization by preventing the separation of the bones (os coxae and femur), The ligament. capitis femoris, also known as the femoral head ligament or round ligament and the transverse acetabular ligament without these ligaments dislocation can occur at the coxofemoral (hip) joint. Furthermore, the coxofemoral joint capsule extends from the neck of the femur to the acetabulum's border [1-4]. 

Ligaments. The Canine coxofemoral joint was stabilized by two ligaments; the transverse acetabular ligament (Fig. 6/2) was a thin band that crossed the acetabular notch and closed the acetabulum's margin, located at the ventrocaudal zone of the acetabulum, and the other ligament was the (femoral head) round ligament (Fig. 6/1) a dense cord of collagenic material that extended from the fovea capitis in the femoral head to the acetabular fossa within the joint capsule.

Fig. 6. shows ligaments that stabilize the Canine hip joint. 1, round (femoral head) ligament extending from the fovea capitis of the femoral head to the acetabular fossa; 2, transverse acetabular ligament closing the acetabular rim; 3, femoral head 4, greater trochanter; 5, shaft of the femur; 6, ilium; 6’, iliac crest; 7, pubis; 8, ischium; 8’, ischial tuberosity; 8’’, ischial arch; 9, obturator foramen; 10, pelvic symphysis; 11, acetabular rim; 12, semilunar facet of the acetabulum. (EJVS is a Free Access journal).

 

[v] In the acetabular fossa (), the ligamentum teres appeared torn and friable. Once the ligamentum teres was debrided, the exostosis was apparent in the anterior and inferior region of the fossa (zone 1; Fig. 4b), but its consistency was softer than the surrounding bone.

Figure 4. Intraoperative hip arthroscopy and postoperative MRI for Patient 3. In all intraoperative images, femoral head cartilage is visible on the right, with the acetabulum on the left. The anterior acetabulum is oriented at the top of the images. (a) View of the acetabular fossa upon initial inspection of the joint after clearing hemarthrosis. (b) View of acetabular fossa once the residual ligamentum teres was removed with a shaver with the exostosis marked by an asterisk. (c) Radiofrequency ablation of the body exostosis was performed with a curved, hip-length arthroscopic radiofrequency ablation device. (d) Articular surface of the acetabulum following curettage, burring, and radiofrequency ablation of the bony exostosis. (e) Postoperative MRI at the 7-month interval with resolution of the previously seen bone marrow edema and synovitis. (Creative Commons Attribution-NonCommercial License, CC BY-NC 4.0)

 

[vi] Likewise, in cats, the artery of the ligament of the head of the femur also contributes to epiphyseal blood supply, and this route may explain why Legg-Calvé-Perthes is not generally observed in cats.

 

[vii] By the age of 10, the artery of ligamentum teres develops sufficiently to provide approximately 20% of the blood supply to the femoral head [9].

9. Trueta J. The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg Br. 1957;39-B:358–94. doi: 10.1302/0301-620X.39B2.358. [DOI] [PubMed] [Google Scholar]


Damage to the ligamentum teres and capsule occurs when the hip dislocates posteriorly. AVN might ensue from this, compromising the femoral head’s blood supply from both the ligamentum teres and the retinacular veins. 


[viii] There were no clear MR signs of osteonecrosis of the femoral head. There was mild to moderate hip joint effusion. The joint space was still preserved. The articular cartilage, transverse ligament, ligamentum teres, and labrum were intact.

 

[ix] Across the iliofemoral Smith-Peterson approach, the iliac apophysis was divided into two halves and dissected laterally. The origins of gluteus medius and gluteus minimus were elevated subperiosteally. The dislocated head was approached after opening the left hip joint capsule. The fibrous tissue, hypertrophied ligamentum teres, and pulvinar fat from the acetabulum were excised. The head was reduced into the native acetabulum and subtrochanteric osteotomy was done.

  

[x] A safe surgical dislocation of the hip (Ganz dislocation) was achieved by flexing and externally rotating the hip followed by cutting the ligamentum teres with curved scissors. The fracture epiphysis was temporarily fixed with a K-wire and then secured with two Herbert screws. 

 

[xi] The capsule was initially exposed, sliced parallel to the rim of the acetabulum and approximately 1 cm distal to it, and then cut at a right angle to the first incision to create a T-shaped incision. The ligamentum teres was found, removed from the head, and secured using Kocher forceps to identify the site of the actual acetabulum. Using scissors, it was separated from the true acetabulum. A tiny nibbler was used to remove the hypertrophied fibro-fatty tissue (pulvinar) till the articular cartilage was seen to clean the acetabular floor. Sectioning the transverse acetabular ligament made head reduction easier.

 

[xii] Many auto- or allograft options now exist for labral reconstruction, including ITB, semitendinosus, indirect head of the rectus femoris tendon, gracilis, peroneus brevis, labrum allograft, meniscus allograft, and ligamentum teres. 16, 17

16. M.S. Abdelaal, R.M. Sutton, C. Atillasoy, J. Parvizi Allograft reconstruction of acetabular labrum has comparable outcomes to labral refixation J Hip Preserv Surg, 10 (2023), pp. 24-30

17. S.F. DeFroda, B. Crist, J.L. Cook Arthroscopic hip labral reconstruction with fresh meniscal allograft Arthrosc Tech, 12 (2023), pp. e813-e821

 

[xiii] On the posterior surface, lateral to the femoral head, there is a broad sulcus for attaching the ligament femoral capitalis, forming a broad concavity in proximal 87 view (Fig. 2B, E).

 

[xiv] Femoroacetabular impingement syndrome (FAIS) is a motion-related disorder of the hip joint in which abnormal contact between the acetabulum and the proximal femur can lead to hip pain and is associated with clinical and radiologic signs [1]. … In cases where nonsurgical management of FAIS fails, surgical intervention may be indicated to treat the abnormal bone morphology, either by arthroscopy or surgical hip dislocation (SHD), both of which have shown satisfactory short- and long-term outcomes [4-7].

The hip was dislocated in flexion–external rotation, and an inspection of the central compartment was performed to look for possible labral or articular cartilage lesions. The status of the acetabular and cephalic cartilage was also assessed. The hip was dislocated in flexion–external rotation, and an inspection of the central compartment was performed to look for possible labral or articular cartilage lesions. The status of the acetabular and cephalic cartilage was also assessed. … The round ligament was excised and then an osteochondroplasty of the head–neck junction was performed while respecting the retinacular vessels. The hip was thereafter reduced and its stability as well as correct mobility were verified (approximately 30° of internal rotation in flexion). 

 

[xv] Conclusions. An intact or torn ligamentum teres managed with debridement does not influence the postoperative PROMs in patients undergoing arthroscopic management for FAI.


[xvi] The monograph is dedicated to the oldest mention of LCF injury and the fate of the first patient with this pathology.


 

Comments

Popular posts from this blog

LCF in 2025 (September)

  LCF in 2025 ( September )   (Quotes from articles and books published in  September  2025 mentioning the ligamentum capitis femoris)   Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).   01 September 2025. PREPRINT (Version 1)  [i]   researchsquare.com   Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.   [ii]   link.springer.com   Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis , 37 (3), 171-177.    [iii]    pmc.ncbi.nlm.nih.gov      Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P....

0cent.4Q158.1-2

  Content [i]   Annotation [ii]   Original text [iii]   Translation [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments 1-2 of Dead Sea Scroll 4Q158.1-2, which previously contained part of Genesis 32 with a mention of ligamentum capitis femoris (LCF). We have translated the reconstructed text of M.M. Zahn (2009). The English translation is available at: 0 cent .4 Q 158.1-2 . [ii]   Original text Photocopy   Dead Sea Scroll 4Q158, fragments 1-2 (Plate 138, Frag. 4 B-358482), material – parchment, text – Hebrew, period – Herodian. A screenshot of the original from The Leon Levy dead sea scrolls Digital Library collection, © 2025 Israel Antiquities Authority  deadseascrolls.org.il   (Fair use for criticism, study and comparison; sharpening, color correction, and captions done by us.).   Transcription Dead Sea Scroll 4Q158, fragments 1-2, lines 11...

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

1802PalmeraniÁ

   Palmerani Á , drawing Jacob wrestling with the angel (1802 ).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Ángel  Palmerani  – Jacob Wrestling with the Angel  ( 1802); original in the  a...

1910SuttonHA_DrinkerCK

  Fragments from the book Sutton HA, Drinker CK. Osteology and syndesmology (1910). The selected fragments discuss the anatomy and topography of the ligament of the femoral head (LCF). According to the authors, this structure has low strength, but Galen of Pergamon (2-3rd cent.) described it as «the strongest» ( 1829KühnCG ). [Eng] Quote 1. p. 76 . The Cotyloid Lig't., or Cartilage, surmounts the edge of the Acetabulum except where it is broken by the Notch. This ligament simply deepens the cavity. The centre of the Acetabulum, by a rough area, the Cotyloid Fossa, attaches the Ligamentum Teres. Quote 2. p. 79. Head. Slightly more than a half sphere in shape. An articular surface for the Acetabulum occupies it, except at a fossa which attaches the Ligamentum Teres. Quote 3. p. 86. Two connect the bones. They are: 1. Ligamentum Teres: — Weak. Passes between the centre of the Acetabulum and the oval fossa upon the Head of the Femur. It lies outside the synovial membrane. External link...

18c.Augsburg

  Painting on glass from Augsburg – Jacob wrestling with the angel (18 cent.).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Author unknown, painting on the reverse of glass from Augsburg – Jacob wrestling with the a...

Localization of LCF Pathology

  Version : 20240418 Localization of LCF pathology is classified based on the anatomical-topographical principle. It is assumed that the LCF does not end near the attachment site but penetrates into it. LOCALIZATION OF LCF PATHOLOGY 1. Middle part 2. Distal end 3. Proximal end 4. Distal attachment area 5. Proximal attachment area 6. Medial surface 7. Lateral surface 8. Anterior edge 9. Posterior edge 10. Transsynovial 11. Subsynovial 12. Total Lesion The medial surface faces the bottom of the acetabulum. The lateral surface faces the femoral head. Transsynovial pathology implies changes including or only involving the synovial membrane. Subsynovial pathology is localized exclusively beneath the synovial membrane of LCF. Pathology can involve multiple parts of LCF, for example, damage to the distal end and proximal attachment area in a transacetabular fracture.   The distal part of LCF attaches directly to the bone of fovea capitis femoris. Along...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», August 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

Grok. Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?".

  At our request, Grok, artificial intelligence developed by xAI, wrote a review of the article by Arkhipov SV. Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint ([Ru]  Архипов СВ . Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе. 06.04.2025 ). In accordance with the comments, the article was revised and sent for re-review to the ChatGPT language model prepared to assist in the analysis and editing of texts (OpenAI, 2025).  Below is the original text of the review by Grok: Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?: A Note on the Mysterious 'Dark Matter' of the Hip Joint". This review focuses on the analysis of argumentation, as requested. The author asserts that restoration of the acetabular labrum fails to prevent hip joint instability and osteoarthritis when the ligame...

LCF of Pithecanthropus

  The hip joint of Pithecanthropus erectus (Homo erectus) had a ligament of the head of the femur, in Latin called the ligamentum capitis femoris (LCF). The femur of a male specimen was first discovered in 1892 by Eugène Dubois (1858-1940) on the island of Java (2004DeVosJ). The age of the sediment preserving the remains of the Java Man is estimated to be approximately in the range of 540-430 thousand years (2015JoordensJC_RoebroeksW). On the femoral head, a deep pit of the femoral head is noticeable—the trace of the distal attachment of the LCF ( sketchfab.com ). The location of the pit on the femoral head of Pithecanthropus is identical to that of Homo sapiens. In light of this, we assume that the Java Man walked similarly to anatomically modern humans. Illustration: Pithecanthropus had LCF The left femur of Java Man (Pithecanthropus erectus, Homo erectus), specimen from the Darwin Museum (Moscow); view from the medial side (photo by the author). The arrow indicates the fossa of ...