Skip to main content

LCF in 2024 (November)


Publications about the LCF 2024 (November).

 

Mohammed, C., Kong, R., Kuruba, V., Rai, V., & Munazzam, S. W. (2024). Outcomes and complications of hip arthroscopy for femoroacetabular impingement syndrome: A narrative review. Journal of Clinical Orthopaedics and Trauma, 102797. [i]  journal-cot.com

 

Shah, M. Q. A., Kiani, R. B., Ahmad, A., Malik, H. A., Rehman, J. U., & Anwar, Z. (2024). Children with Developmental Dysplasia of Hip-Our Experience of Outcome at a Tertiary Care Centre. Pakistan Armed Forces Medical Journal, 74(5), 1236.  [ii]  scholar.google.com

 

Graf, R. Sonography of the Infant’s Hip: Principles, implementation and therapeutic consequences. Springer Nature. 2024.  [iii]  books.google

 

Sáenz, J. F. C., Carrera, E. T., Gutiérrez, R. A., & De La Ossa, L. (2024). Capsular Traction-Assisted Hip Arthroscopy: An Alternative to T-Capsulotomy for Osteochondroplasty. Arthroscopy Techniques, 103296.  [iv]  sciencedirect.com

 

Sondur, S., Kaushik, S., & Das, S. P. (2024). Journal of Orthopaedic Reports. Journal of Orthopaedic Reports, 3, 100230. [v]  researchgate.net

 

Hung, N. N. (2024). Long-term Outcome and Complications Following Open Reduction, Hung Zigzag Iliac Osteotomy Combined Fibular Allograft for Developmental Dysplasia of the Hip in Children. EC Paediatrics, 13, 01-19. [vi]  ecronicon.net

 

Asnis, S. E., Heimroth, J. C., & Goldstein, T. (2024). A Mathematical Evaluation of the Effects of the Head and Neck Diameter on the Arc of Motion and the Implications in Total Hip Arthroplasty. Arthroplasty Today, 30, 101556. [vii]  sciencedirect.com

 

Lee, J. H., Girardi, N. G., Kraeutler, M. J., Keeter, C., Genuario, J. W., Garabekyan, T., & Mei-Dan, O. (2024). Staged Hip Arthroscopy and Periacetabular Osteotomy in Active Patients 45 Years and Older Produces Comparable Improvements in Outcome Scores to Younger Patients. Arthroscopy: The Journal of Arthroscopic & Related Surgery. [viii]  arthroscopyjournal.org

 

Toosey, W. J., Williamson, T. E., Shelley, S. L., & Brusatte, S. L. (2024). The osteology of Triisodon crassicuspis (Cope, 1882): New insights into the enigmatic “archaic” placental mammal group “Triisodontidae”. PloS one, 19(11), e0311187.   [ix]  journals.plos.org

 

Cheong, T., Tao, X., Nawabi, D. H., Abd Razak, H. R. B., & Lee, M. (2024). Clinical Outcomes of Arthroscopic Surgical Intervention in Femoroacetabular Impingement Amongst the Asian Population: A Meta-analysis. Journal of ISAKOS.  [x]  jisakos.com

 

Bal, Z., & Takakura, N. (2024, November). DEVELOPING A SMALL ANIMAL TRAUMA MODEL FOR FEMORAL HEAD OSTEONECROSIS. In Orthopaedic Proceedings (Vol. 106, No. SUPP_18, pp. 31-31). Bone & Joint. [xi]  boneandjoint.org.uk

 

Singh, A. (Ed.). (2024). Emergency Radiology: Imaging of Acute Pathologies. [xii]  books.google

 

Posiyano, K., Prasad, R. V. S., Dzogbewu, T. C., Olakanmi, E. O., Leso, T. P., Setswalo, K., & Sello, A. T. (2024). THE POTENTIAL OF Ti-6Al-7Nb, AND DESIGN FOR MANUFACTURING CONSIDERATIONS IN MITIGATING FAILURE OF HIP IMPLANTS IN SERVICE. Biomedical Engineering Advances, 100136. [xiii]  sciencedirect.com   ,  researchgate.net

 

Cao, J., Li, Y., Luo, J., Zheng, Z., Wang, X., Su, Y., & Han, J. (2024). MRI-Based Parameters to Assess the Quality and Prognosis of the Closed Reduction in the Developmental Dislocation of the Hip in Toddlers. November 18th, 2024.  [xiv]  assets-eu.researchsquare.com

 

Dangas, K., MacAulay, A., & Mifsud, M. Vascularized Fibular Graft With Femoral Head Epiphysis In Situ for Hip Reconstruction After Proximal Femoral Chondrosarcoma Resection in a Child. Techniques in Orthopaedics, 10-1097.   [xv]  journals.lww.com

 

Hemanth, K. S., Tigulla, D., Lakshmi, V., & Buhari, S. (2025). Early stage detection of osteoarthritis of the joints (hip and knee) using machine learning. In Diagnosing Musculoskeletal Conditions using Artifical Intelligence and Machine Learning to Aid Interpretation of Clinical Imaging (pp. 39-64). Academic Press. [xvi]  sciencedirect.com

 

Qin, S., Shi, L., Guo, B., Jiao, S., Zang, J., Qin, S., ... & Shi, L. (2024). Congenital Deformity of Lower Limbs. In Atlas of Limb Deformity: Etiological Classification (pp. 21-61). Singapore: Springer Nature Singapore.  [xvii]  link.springer.com

 

Foss, C. (2024). Ligamentous Injuries of the Hip. In Dissecting Sports Injuries of the Hip (pp. 165-183). Cham: Springer Nature Switzerland.  [xviii]  link.springer.com

 

Perraut, G., Evans, B. G., & Park, K. W. (2024). Hip Osteoarthritis and Arthroplasty. Essentials of Orthopedic Surgery, 323. [xix]  books.google

 

Bhimsaria, G., Nagaeswari, T., Srimathi, T., & Ramachandran, K. (2024). An anatomico-morphometric analysis of proximal femur. Bioinformation, 20(9), 990-992.  [xx]   bioinformation.net

 

Fujii, H. (2024). Functional Anatomy of the Hip Joint Specific to THA. In Advances in Total Hip Arthroplasty (pp. 57-63). Singapore: Springer Nature Singapore.  [xxi]  link.springer.com 

 

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

  


[i]  Areas of ongoing debate include the role of labral debridement versus repair, the optimal management of mixed-type FAIS, and the potential benefits of adjunctive procedures such as ligamentum teres debridement.

 

[ii] Persistent dislocation leads to chronic changes in the acetabulum, ligamentum teres and capsule that further reduces the chances of stable reduction.3

3. Litrenta J, Masrouha K, Wasterlain A, Castaneda P. Ultrasound Evaluation of Pediatric Orthopaedic Patients. J Am Acad Orthop Surg 2020; 28(16): e696-e705.

 

[iii] Between this tissue and the femoral head, the ligamentum teres stretches from the region of the acetabular notch (incisura acetabuli). It attaches with a relatively broad insertion at the fovea centralis of the femoris head (see Fig. 3.26).

 

[iv] In our practice, we do not routinely perform capsular repair. By using capsular traction and not affecting the zona orbicularis, we minimize capsular damage during our procedures, so we do not believe it is necessary to perform capsular closure in all cases. We consider capsular closure in patients with risk factors for developing secondary instability, patients with signs of hypermobility or with those with borderline dysplasia6,7 (center-edge angle of 22°-24°) with lateral center edge angles less than 30°, patients with a diffuse acetabular lesion pattern not caused by cam or pincer (Seldes8 type I and II), ligament teres rupture, and those in whom ease in performing traction of the extremity with the opening of the articular space with little effort is possible.9

  

[v]   

Fig. 2. Computed tomography images confirming the posterior dislocation of the femoral head and acetabular wall fracture.

Fig. 3. A: Intra-operative photograph of patient in lateral decubitus position. The femoral head is delivered out via the posterior approach and the ligamentum teres is found to be completely detached from its femoral attachment. B: Post-operative radiograph depicting fixation of left femoral neck with three cancellous screws and the acetabular wall with a reconstruction plate and screws and concentric reduction of the femoral head.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  

[vi] In older children, hip reduction becomes difficult due to adaptive shortening of the extra-articular soft tissues, acetabular dysplasia, capsular contracture, increased femoral anteversion, ~ acetabular fat pad, round ligament hypertrophy, and ~ inversion of the articular margin. 

Care was taken to extend the condylar incision as medially as possible. The teres ligament and the transverse acetabular ligament were excised. 

Table 2: Details of the initial treatment and subsequent surgeries for 157 cases of congenital dislocation requiring open reduction using SOFA without femoral osteotomy.

In the Table 2: Adductor tenotomy: 150 (95.8%); Poas tendon: 150 (95.8%); Ligamentum teres [present]:147 (93.8%); Transverse acetabular ligament: 153 (97.9%); Pulvinar: 143 (91.7%); Capsulorraphy: 57 (100.0%); Kirschner: 157 (100.0%). 

Table 3: Second operation with femoral shortening after initally operation 3 months (62 Híp)

In the Table 3: Adductor tenotomy: 54 (87.1%), Psoas tendon: 51 (82.3%), Ligamentum teres present: 56 (90.3%), Puvinar present: 57 (91.9%), Transverse ligament present: 54 (87.1%), Capsulorrhaphy: 62 (100.0%), Kirschner wire: 62 (100.0%), Femoral shortening: 62 (100.0%).

  

[vii] The limitation in the native human hip range of motion is due to the ligamentum teres which acts as an end-range stabilizer of the hip [4].

4. Martin, H. D., Hatem, M. A., Kivlan, B. R., & Martin, R. L. (2014). Function of the ligamentum teres in limiting hip rotation: a cadaveric study. Arthroscopy: The Journal of Arthroscopic & Related Surgery30(9), 1085-1091.

  

[viii] of labral hypertrophy, articular cartilage thickening, or ligamentum teres tear all aided in establishing a diagnosis of symptomatic hip instability.

  

[ix] The “triisodontids” are generally rare elements of the Puercan (ca. 66−63.5 Ma) and Torrejonian (ca. 63.5−62 Ma) faunas of the San Juan Basin, but some have also been reported from other Paleocene localities throughout western North America [12,13].

 

The femoral head is large and would have originally been hemispherical in shape, as in Periptychus carinidens (NMMNH P-19430) and Arctocyon primaevus (MNHN.F.CR17, CR16), but has undergone postburial deformation, becoming more mediolaterally compressed (Fig 26B and 26D). The hemispherical shape contrasts to the relatively ovoid shape of Ar. mumak (YPM-PU 18703), the latter which has a flattened distal edge [64]. The articular surface is smooth and restricted to the head, not extending onto the femoral neck medially. In Triisodon crassicuspis, the articular surface on the posteromedial side of the femoral head is excavated by well-defined and relatively deep fovea capitis (Fig 26B), which provided an insertion for the ligamentum teres [91]. The fovea capitis is ovoid-shaped and distally expanded, although it does not interrupt the posteromedial border of the femoral head, as in Ar. mumak and Ar. primaevus, but unlike Pe. carinidens. The anteroposteriorly narrow fovea capitis could have also resulted from postburial deformation.

  

[x] Ligamentum teres was debrided if there was hypertrophy or synovitis.

 

[xi] Left femoral head was dislocated from the hip joint, ligamentum teres was cut, and a slight circular incision was done around the femoral neck of 8-week-old male C57BL/6J mice to disrupt the blood supply to femoral head.

 

[xii] The blood supply to the femoral head is through three routes, including the vessels in the ligamentum teres, capsular vessels, and branches of the nutrient vessels.

 

[xiii] 

Fig. 1. Anatomical features of the hip joint. (A) Transverse view of the acetabular component with the ligament. (B) Lateral view of the head of the femur that has been rotated laterally out of the acetabulum to show the ligament and the cut synovial membrane [47].

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

 

[xiv] In the successful CR group, the soft tissues observed on MRI included an inverted labrum (four hips), thickening of the ligamentum teres (six hips), brofatty pulvinar tissue (two hips), and joint effusion (four hips).

 

[xv]  The hip was dislocated with great care, ensuring that the ligamentum teres vessel and the posterior capsule remained intact to preserve blood supply to the femoral epiphysis. Under image guidance, 1.6 mm K-wires were inserted along the femoral head physis to mark the resection margin. The femoral head was divided axially along the physis. The epiphysis remained attached to ligamentum teres throughout, with an arterial line and 18-G needle inserted into the femoral head epiphysis to assess for an arterial waveform. Good bleeding from the distal aspect of the epiphysis was also noticed and was encouraging. The dissection around the tumor was now completed proximally

 

[xvi] … MRI can detect changes in soft tissues around the hip joint, including structures such as the labrum and ligamentum teres, which are thought to have a role in OA [osteoarthritis].

 

[xvii] Arthrography may show dysplasia of the articular capsule, labrum, and round ligament (Fig. 2.2).

 

[xviii] The Ligamentum Teres (LT) is an intraarticular ligament. It originates at the transverse acetabular ligament of the acetabulum and connects to the head of the femur at the fovea capitis. The function of this ligament is to assist in the stability...

 

[xix] The artery of the ligamentum teres, a branch of the obturator artery, travels within the ligamentum teres and supplies only 10-20% of the blood supply to the femoral head. …

 

[xx] The fovea capitis is also an important anatomical structure in the proximal femur that transmits vessels supplying the femoral head. This ligament plays a role in cases where the head of femur undergoes avascular necrosis, which is a complication of hip fractures and dislocations. The mean transverse diameter of the fovea in our study was 10.97±2.20 mm. This value is comparable to those found by Gupta et al., i.e. 11.38±2.35 mm. However, the longitudinal diameter of the fovea in our study, 9.46±2.24, is much lesser than the value obtained by the same study 15.94±3.37 mm, suggesting a regional variation between northern and southern Indian populations. The computed tomography study done by Ceynowa et al. [5] in Poland found the transverse diameter to be 12.94±2.61 mm and the longitudinal diameter to be 10.83±2.32 mm, with the values being greater in men than in women.

Gupta M et al. Cureus. 2022 14:e28780. [PMID: 36225441]

Ceynowa M et al. Surg Radiol Anat. 2019 41:101 [PMID: 30171297]

 

[xxi] Ligamentum Teres of the Femur (Fig. 14.3) The ligamentum teres connects the acetabulum and femoral head. The ligament is tense when the hip joint is flexed and abducted [???] and relaxes when the hip joint is abducted and flexed.


 


Comments

Popular posts from this blog

BLOG CONTENT

  T he ligament of the head of femur or ligamentum capitis femoris (LCF) is the key to a graceful gait and understanding the causes of hip joint diseases. We present promising scientific knowledge necessary for preserving health,  to create new implants and techniques  of treating degenerative  pathology and damage of the hip joint. Project objective : preserving a normal gait and quality of life, helping to study of hip joint biomechanics, developing effective treatments for its diseases and injuries. In translating to English, the author is assisted by ChatGPT (version 3.5)  and the Google Translate service .  We're sorry for any flaws in the syntax. The meaning makes up for the imperfections!     TABLES OF CONTENTS    Acetabular Canal   (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligam...

1827KühnCG

  Fragment from the book Kühn CG. Clavdii Galeni Opera omnia (1827). Pseudo-Galen notes the connecting function of the ligamentum capitis femoris (LCF) and also specifies the proximal and distal attachment sites. See our commentary at the link: 1827KühnCG [Rus].  Quote [Grc] Εἰσαγωγὴ   ἢ   Ἰτρός . K εφ .  ιβ . [ Περί   όστεολογἰας .] μηρου δέ έν μεν οστούν .  συμβάλλει δε επικεκαμμένη μετρίως τη κεφαλή αυτού εις βαθείαν κοτύλην του ισχίου και νεύρῳ απήρτηται εκφυομένω εκ μέσης της κοτύλης και εμφυομένω εις μέσην την κεφαλήν του μηρού . (original source: 1827KühnCG, pp. 723-724) [Lat Introductio, seu Medicus. Cap. XII.   [De osteologia] Femoris os unum est, cujus caput leniter reflexum in coxae profundum sinum conjicitur. Quam commissuram nervus, qui e medio sinu prodit et in medium femoris caput inseritur, continet. (original source: 1827KühnCG, pp. 723-724) Translation [Eng] Introduction, or the Physician. Chapter 12. [On osteology] The hip has ...

The Solar System

  The Solar System As a result of a mysterious catastrophic event about 13.8 billion years ago, the Universe was formed (2012HawkingS; 2020AghanimN_RoudierG). In it, giant cloud-like accumulations of plasma, molecules and dust became the points of star formation (2011MurrayN). A series of their generations, igniting, functioning and collapsing, led to the appearance of various chemical elements through staged reactions of nuclear fusion (1998IshkhanovBS_TutynIA). The Sun was born for at least ten million years by compressing a concentration of molecular gas and parts of the most ancient stars (2010HanslmeierA). As a result, 4.5682-4.567 billion years ago, the Solar System self-organized, at the dawn of its life consisting of a central luminary and a protoplanetary gas and dust disk (2013HazenRM). At least the oldest meteorite inclusions were fused 4.568-4.565 billion years ago, and at most three million years later, accretion of chondrite globules occurred (1995AllègreCJ_GöpelC). T...

2003IvanovYV

  Ivanov YV, panel, wood carving – Jacob Wrestling with the Angel (2003). Variant of depicting the  circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis:  25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Ivanov Yuri Vitalievich – Jacob Wrestling with the Angel (2003);  im...

1666VeslingJ

  Fragments from the book Vesling J. Syntagma anatomicum (1666). The author describes the attachment, properties and role of the ligamentum capitis femoris (LCF). The text uses several synonyms: ligamentum teres, rotundo, tereti. Quote p. 269 [Lat] Superior appendix cum adjuncto processu, amplum, globosum que femoris caput constituit, valida cervice subnixum, quod intra cavitatem ossis Ischii, Ilium, & Pubis concursu productam, (Acetabulum alias, Pyxidemque nominant) reconditur. Detinetur in hoc sinu robustis LIGAMENTIS: lato uno, & membranoso, quod articulum totum circumdat, tum rotundo altero, & tereti, quod ab ipsa cavitate productum, statim in caput susceptum demittitur. Quote p. 276 [Lat] Fig. VII … b. Ligamentum teres, ex Acetabulo natum. Translation [Eng] Quote p. 269 . The superior appendage, together with the accessory process, forms the large, spherical head of the femur, supported by a strong neck, which is placed in a cavity formed by the ischium, ilium, and...

1614PlatterF

Fragment from the book Platter F. Observationum (1614). The author notes the role of the ligamentum capitis femoris (LCF) in fixing the femur in the acetabulum and the possibility of its lengthening  (synovitis) . Quote pp. 141-142 [Lat] Cruris dextri astrictio & contractio, post coxendicum dolorem. Cùm enim ligamentum illud articulum circumd ás, omnium totius corporis ligamentorum, quae articulos ambiunt, sit amplissimum; fieri potest, ut adeò cedat, ut (sicuti saepe sit) femoris caput, è suo sinu devoluatur, & in membranae illius (quae cùm erassissima sit, prae omnibus totius corporis ligamentis, nunquam vi qualicunque disrumpi potest) amplitudine seu capacitate subsistat, elongato simul & vehementer attracto, tereti illo & crasso, quod caput aliàs in suo sinu retinere solet, ligamento. Quod & ob tensionem illam nimiam, astrictum & induratum, chordae alicuius crasssissimae & firmisimae instar, quae nunquam disrumpi, nunquam ab acetabulo, cuius cartilag...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», July 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

344-411Rufinus Aquileiensis

  A fragment of the manuscript of the translation of Josephus Flavius' Antiquities of the Jews ( Ἰουδαϊκὴ ἀρχαιολογία / De antiquitate iudaica) into Latin by Rufinus Aquileiensis. The translator worked approximately between 344 and 411 in the Roman Empire. His work was rewritten between 1150 and 1199 in Northern France. In Josephus's translation of Antiquities of the Jews, ligamentum capitis femoris (LCF) is referred to as «neruum». The selected fragment deals with the LCF of an animal and discusses a biblical episode of its damage in a human. See our commentary at the link: 344-411Rufinus Aquileiensis [Rus]. T he original text: 93-94JosephusF . Quote [ Lat] De antiquitate iudaica. Liber primus (original source: 1150JosephusF, p. 22, fragment) Translation [Eng] Antiquities of the Jews. Book 1. 20.2 When Jacob had made these appointments all the day, and night came on, he moved on with his company; and, as they were gone over a certain river called Jabboc, Jacob was left behi...

1794LoderJC

  Drawings and descriptions from book Loder JC. Tabulae anatomicae (1794). Image of the hip joint, ligamentum capitis femoris (LCF) and peripheral part of the acetabular canal ( hiatus acetabuli ,  see Fig. 2.10) .   External links Loder JC. Tabulae anatomicae quas ad illustrandam humani corporis fabricam colle git et curavit. Vinariae, 1794. [ wellcomecollection.org ] Authors & Affiliations Justus Ferdinand Christian Loder (1753-1832) was a German anatomist and surgeon, professor of surgery and anatomy at the University of Jena. [ wikipedia.org ] Justus Christian Loder (1801?) Engraving by F. Müller after a painting by Fr. A. Tischbein; original in the  wikimedia.org   collection (CC0 – Public Domain, no changes)   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, image                                    ...

150-250Targum Jonathan

  Fragments from the Targum Jonathan on Genesis. Tractate was written between about 150 - 250 in lend of Israel. The text is a combination of a translation and commentary on the book of Bereshit. The unknown compiler mentions ligamentum capitis femoris (LCF) in an animal and an episode of its damage in a human. See our commentary at the link: 150-250Targum Jonathan [Rus]. Quote 1. [Heb] Genesis. 32:33 (original source:  sefaria.org ) Quote 2. [Heb] Genesis. 43:16 (original source:  sefaria.org ) Translation Quote 1. [Eng] Genesis. 32:33 Therefore, the sons of Israel eat not the sinew which shrank, which is in the hollow of the thigh of cattle and of wild animals, until this day; because the Angel touched and laid hold of the hollow of the right thigh of Jakob, in the place of the sinew which shrank. (Transl. by J.W. Etheridge (186 2 ) ; original source: targum.info ) Quote 2. [Eng] Genesis. 43:16 And Joseph saw Benjamin with them: and he said to Menasheh whom he had mad...