Skip to main content

LCF in 2024 (November)


Publications about the LCF 2024 (November).

 

Mohammed, C., Kong, R., Kuruba, V., Rai, V., & Munazzam, S. W. (2024). Outcomes and complications of hip arthroscopy for femoroacetabular impingement syndrome: A narrative review. Journal of Clinical Orthopaedics and Trauma, 102797. [i]  journal-cot.com

 

Shah, M. Q. A., Kiani, R. B., Ahmad, A., Malik, H. A., Rehman, J. U., & Anwar, Z. (2024). Children with Developmental Dysplasia of Hip-Our Experience of Outcome at a Tertiary Care Centre. Pakistan Armed Forces Medical Journal, 74(5), 1236.  [ii]  scholar.google.com

 

Graf, R. Sonography of the Infant’s Hip: Principles, implementation and therapeutic consequences. Springer Nature. 2024.  [iii]  books.google

 

Sáenz, J. F. C., Carrera, E. T., Gutiérrez, R. A., & De La Ossa, L. (2024). Capsular Traction-Assisted Hip Arthroscopy: An Alternative to T-Capsulotomy for Osteochondroplasty. Arthroscopy Techniques, 103296.  [iv]  sciencedirect.com

 

Sondur, S., Kaushik, S., & Das, S. P. (2024). Journal of Orthopaedic Reports. Journal of Orthopaedic Reports, 3, 100230. [v]  researchgate.net

 

Hung, N. N. (2024). Long-term Outcome and Complications Following Open Reduction, Hung Zigzag Iliac Osteotomy Combined Fibular Allograft for Developmental Dysplasia of the Hip in Children. EC Paediatrics, 13, 01-19. [vi]  ecronicon.net

 

Asnis, S. E., Heimroth, J. C., & Goldstein, T. (2024). A Mathematical Evaluation of the Effects of the Head and Neck Diameter on the Arc of Motion and the Implications in Total Hip Arthroplasty. Arthroplasty Today, 30, 101556. [vii]  sciencedirect.com

 

Lee, J. H., Girardi, N. G., Kraeutler, M. J., Keeter, C., Genuario, J. W., Garabekyan, T., & Mei-Dan, O. (2024). Staged Hip Arthroscopy and Periacetabular Osteotomy in Active Patients 45 Years and Older Produces Comparable Improvements in Outcome Scores to Younger Patients. Arthroscopy: The Journal of Arthroscopic & Related Surgery. [viii]  arthroscopyjournal.org

 

Toosey, W. J., Williamson, T. E., Shelley, S. L., & Brusatte, S. L. (2024). The osteology of Triisodon crassicuspis (Cope, 1882): New insights into the enigmatic “archaic” placental mammal group “Triisodontidae”. PloS one, 19(11), e0311187.   [ix]  journals.plos.org

 

Cheong, T., Tao, X., Nawabi, D. H., Abd Razak, H. R. B., & Lee, M. (2024). Clinical Outcomes of Arthroscopic Surgical Intervention in Femoroacetabular Impingement Amongst the Asian Population: A Meta-analysis. Journal of ISAKOS.  [x]  jisakos.com

 

Bal, Z., & Takakura, N. (2024, November). DEVELOPING A SMALL ANIMAL TRAUMA MODEL FOR FEMORAL HEAD OSTEONECROSIS. In Orthopaedic Proceedings (Vol. 106, No. SUPP_18, pp. 31-31). Bone & Joint. [xi]  boneandjoint.org.uk

 

Singh, A. (Ed.). (2024). Emergency Radiology: Imaging of Acute Pathologies. [xii]  books.google

 

Posiyano, K., Prasad, R. V. S., Dzogbewu, T. C., Olakanmi, E. O., Leso, T. P., Setswalo, K., & Sello, A. T. (2024). THE POTENTIAL OF Ti-6Al-7Nb, AND DESIGN FOR MANUFACTURING CONSIDERATIONS IN MITIGATING FAILURE OF HIP IMPLANTS IN SERVICE. Biomedical Engineering Advances, 100136. [xiii]  sciencedirect.com   ,  researchgate.net

 

Cao, J., Li, Y., Luo, J., Zheng, Z., Wang, X., Su, Y., & Han, J. (2024). MRI-Based Parameters to Assess the Quality and Prognosis of the Closed Reduction in the Developmental Dislocation of the Hip in Toddlers. November 18th, 2024.  [xiv]  assets-eu.researchsquare.com

 

Dangas, K., MacAulay, A., & Mifsud, M. Vascularized Fibular Graft With Femoral Head Epiphysis In Situ for Hip Reconstruction After Proximal Femoral Chondrosarcoma Resection in a Child. Techniques in Orthopaedics, 10-1097.   [xv]  journals.lww.com

 

Hemanth, K. S., Tigulla, D., Lakshmi, V., & Buhari, S. (2025). Early stage detection of osteoarthritis of the joints (hip and knee) using machine learning. In Diagnosing Musculoskeletal Conditions using Artifical Intelligence and Machine Learning to Aid Interpretation of Clinical Imaging (pp. 39-64). Academic Press. [xvi]  sciencedirect.com

 

Qin, S., Shi, L., Guo, B., Jiao, S., Zang, J., Qin, S., ... & Shi, L. (2024). Congenital Deformity of Lower Limbs. In Atlas of Limb Deformity: Etiological Classification (pp. 21-61). Singapore: Springer Nature Singapore.  [xvii]  link.springer.com

 

Foss, C. (2024). Ligamentous Injuries of the Hip. In Dissecting Sports Injuries of the Hip (pp. 165-183). Cham: Springer Nature Switzerland.  [xviii]  link.springer.com

 

Perraut, G., Evans, B. G., & Park, K. W. (2024). Hip Osteoarthritis and Arthroplasty. Essentials of Orthopedic Surgery, 323. [xix]  books.google

 

Bhimsaria, G., Nagaeswari, T., Srimathi, T., & Ramachandran, K. (2024). An anatomico-morphometric analysis of proximal femur. Bioinformation, 20(9), 990-992.  [xx]   bioinformation.net

 

Fujii, H. (2024). Functional Anatomy of the Hip Joint Specific to THA. In Advances in Total Hip Arthroplasty (pp. 57-63). Singapore: Springer Nature Singapore.  [xxi]  link.springer.com 

 

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

  


[i]  Areas of ongoing debate include the role of labral debridement versus repair, the optimal management of mixed-type FAIS, and the potential benefits of adjunctive procedures such as ligamentum teres debridement.

 

[ii] Persistent dislocation leads to chronic changes in the acetabulum, ligamentum teres and capsule that further reduces the chances of stable reduction.3

3. Litrenta J, Masrouha K, Wasterlain A, Castaneda P. Ultrasound Evaluation of Pediatric Orthopaedic Patients. J Am Acad Orthop Surg 2020; 28(16): e696-e705.

 

[iii] Between this tissue and the femoral head, the ligamentum teres stretches from the region of the acetabular notch (incisura acetabuli). It attaches with a relatively broad insertion at the fovea centralis of the femoris head (see Fig. 3.26).

 

[iv] In our practice, we do not routinely perform capsular repair. By using capsular traction and not affecting the zona orbicularis, we minimize capsular damage during our procedures, so we do not believe it is necessary to perform capsular closure in all cases. We consider capsular closure in patients with risk factors for developing secondary instability, patients with signs of hypermobility or with those with borderline dysplasia6,7 (center-edge angle of 22°-24°) with lateral center edge angles less than 30°, patients with a diffuse acetabular lesion pattern not caused by cam or pincer (Seldes8 type I and II), ligament teres rupture, and those in whom ease in performing traction of the extremity with the opening of the articular space with little effort is possible.9

  

[v]   

Fig. 2. Computed tomography images confirming the posterior dislocation of the femoral head and acetabular wall fracture.

Fig. 3. A: Intra-operative photograph of patient in lateral decubitus position. The femoral head is delivered out via the posterior approach and the ligamentum teres is found to be completely detached from its femoral attachment. B: Post-operative radiograph depicting fixation of left femoral neck with three cancellous screws and the acetabular wall with a reconstruction plate and screws and concentric reduction of the femoral head.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  

[vi] In older children, hip reduction becomes difficult due to adaptive shortening of the extra-articular soft tissues, acetabular dysplasia, capsular contracture, increased femoral anteversion, ~ acetabular fat pad, round ligament hypertrophy, and ~ inversion of the articular margin. 

Care was taken to extend the condylar incision as medially as possible. The teres ligament and the transverse acetabular ligament were excised. 

Table 2: Details of the initial treatment and subsequent surgeries for 157 cases of congenital dislocation requiring open reduction using SOFA without femoral osteotomy.

In the Table 2: Adductor tenotomy: 150 (95.8%); Poas tendon: 150 (95.8%); Ligamentum teres [present]:147 (93.8%); Transverse acetabular ligament: 153 (97.9%); Pulvinar: 143 (91.7%); Capsulorraphy: 57 (100.0%); Kirschner: 157 (100.0%). 

Table 3: Second operation with femoral shortening after initally operation 3 months (62 Híp)

In the Table 3: Adductor tenotomy: 54 (87.1%), Psoas tendon: 51 (82.3%), Ligamentum teres present: 56 (90.3%), Puvinar present: 57 (91.9%), Transverse ligament present: 54 (87.1%), Capsulorrhaphy: 62 (100.0%), Kirschner wire: 62 (100.0%), Femoral shortening: 62 (100.0%).

  

[vii] The limitation in the native human hip range of motion is due to the ligamentum teres which acts as an end-range stabilizer of the hip [4].

4. Martin, H. D., Hatem, M. A., Kivlan, B. R., & Martin, R. L. (2014). Function of the ligamentum teres in limiting hip rotation: a cadaveric study. Arthroscopy: The Journal of Arthroscopic & Related Surgery30(9), 1085-1091.

  

[viii] of labral hypertrophy, articular cartilage thickening, or ligamentum teres tear all aided in establishing a diagnosis of symptomatic hip instability.

  

[ix] The “triisodontids” are generally rare elements of the Puercan (ca. 66−63.5 Ma) and Torrejonian (ca. 63.5−62 Ma) faunas of the San Juan Basin, but some have also been reported from other Paleocene localities throughout western North America [12,13].

 

The femoral head is large and would have originally been hemispherical in shape, as in Periptychus carinidens (NMMNH P-19430) and Arctocyon primaevus (MNHN.F.CR17, CR16), but has undergone postburial deformation, becoming more mediolaterally compressed (Fig 26B and 26D). The hemispherical shape contrasts to the relatively ovoid shape of Ar. mumak (YPM-PU 18703), the latter which has a flattened distal edge [64]. The articular surface is smooth and restricted to the head, not extending onto the femoral neck medially. In Triisodon crassicuspis, the articular surface on the posteromedial side of the femoral head is excavated by well-defined and relatively deep fovea capitis (Fig 26B), which provided an insertion for the ligamentum teres [91]. The fovea capitis is ovoid-shaped and distally expanded, although it does not interrupt the posteromedial border of the femoral head, as in Ar. mumak and Ar. primaevus, but unlike Pe. carinidens. The anteroposteriorly narrow fovea capitis could have also resulted from postburial deformation.

  

[x] Ligamentum teres was debrided if there was hypertrophy or synovitis.

 

[xi] Left femoral head was dislocated from the hip joint, ligamentum teres was cut, and a slight circular incision was done around the femoral neck of 8-week-old male C57BL/6J mice to disrupt the blood supply to femoral head.

 

[xii] The blood supply to the femoral head is through three routes, including the vessels in the ligamentum teres, capsular vessels, and branches of the nutrient vessels.

 

[xiii] 

Fig. 1. Anatomical features of the hip joint. (A) Transverse view of the acetabular component with the ligament. (B) Lateral view of the head of the femur that has been rotated laterally out of the acetabulum to show the ligament and the cut synovial membrane [47].

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

 

[xiv] In the successful CR group, the soft tissues observed on MRI included an inverted labrum (four hips), thickening of the ligamentum teres (six hips), brofatty pulvinar tissue (two hips), and joint effusion (four hips).

 

[xv]  The hip was dislocated with great care, ensuring that the ligamentum teres vessel and the posterior capsule remained intact to preserve blood supply to the femoral epiphysis. Under image guidance, 1.6 mm K-wires were inserted along the femoral head physis to mark the resection margin. The femoral head was divided axially along the physis. The epiphysis remained attached to ligamentum teres throughout, with an arterial line and 18-G needle inserted into the femoral head epiphysis to assess for an arterial waveform. Good bleeding from the distal aspect of the epiphysis was also noticed and was encouraging. The dissection around the tumor was now completed proximally

 

[xvi] … MRI can detect changes in soft tissues around the hip joint, including structures such as the labrum and ligamentum teres, which are thought to have a role in OA [osteoarthritis].

 

[xvii] Arthrography may show dysplasia of the articular capsule, labrum, and round ligament (Fig. 2.2).

 

[xviii] The Ligamentum Teres (LT) is an intraarticular ligament. It originates at the transverse acetabular ligament of the acetabulum and connects to the head of the femur at the fovea capitis. The function of this ligament is to assist in the stability...

 

[xix] The artery of the ligamentum teres, a branch of the obturator artery, travels within the ligamentum teres and supplies only 10-20% of the blood supply to the femoral head. …

 

[xx] The fovea capitis is also an important anatomical structure in the proximal femur that transmits vessels supplying the femoral head. This ligament plays a role in cases where the head of femur undergoes avascular necrosis, which is a complication of hip fractures and dislocations. The mean transverse diameter of the fovea in our study was 10.97±2.20 mm. This value is comparable to those found by Gupta et al., i.e. 11.38±2.35 mm. However, the longitudinal diameter of the fovea in our study, 9.46±2.24, is much lesser than the value obtained by the same study 15.94±3.37 mm, suggesting a regional variation between northern and southern Indian populations. The computed tomography study done by Ceynowa et al. [5] in Poland found the transverse diameter to be 12.94±2.61 mm and the longitudinal diameter to be 10.83±2.32 mm, with the values being greater in men than in women.

Gupta M et al. Cureus. 2022 14:e28780. [PMID: 36225441]

Ceynowa M et al. Surg Radiol Anat. 2019 41:101 [PMID: 30171297]

 

[xxi] Ligamentum Teres of the Femur (Fig. 14.3) The ligamentum teres connects the acetabulum and femoral head. The ligament is tense when the hip joint is flexed and abducted [???] and relaxes when the hip joint is abducted and flexed.


 


Comments

Popular posts from this blog

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

NEWS

  New publications of our resource   November 12, 2025 Arkhipov SV. Test catalog of the LCF pathology. November 11, 2025 2025ArkhipovSV_ArkhipovaLN . Who, When, and Where Wrote the Book of Genesis? November 8, 2025 1635Auferstehungskirche Painting, Drawing depicting the circumstances and mechanism of the LCF injury.    1906HartmannO  Sketch of a painting. Drawing depicting the circumstances and mechanism of the LCF injury.  1668Augsburg   Painting, Drawing depicting the circumstances and mechanism of the LCF injury.  1665 RosaS  Painting. Drawing depicting the circumstances and mechanism of the LCF injury. November 7, 2025 1608Peter-Pauls-Kirche  Painting on wood, Drawing depicting the circumstances and mechanism of the LCF injury.  1701English_Bible Engravin g. Drawing depicting the circumstances and mechanism of the LCF injury. November 6, 2025 1943DixO . Painting, Drawing depicting the circumstances and mechanism of the LCF inj...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», October 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

0cent.4Q158.1-2

  Content [i]   Annotation [ii]   Original text [iii]   Translation [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments 1-2 of Dead Sea Scroll 4Q158.1-2, which previously contained part of Genesis 32 with a mention of ligamentum capitis femoris (LCF). We have translated the reconstructed text of M.M. Zahn (2009). The English translation is available at: 0 cent .4 Q 158.1-2 . [ii]   Original text Photocopy   Dead Sea Scroll 4Q158, fragments 1-2 (Plate 138, Frag. 4 B-358482), material – parchment, text – Hebrew, period – Herodian. A screenshot of the original from The Leon Levy dead sea scrolls Digital Library collection, © 2025 Israel Antiquities Authority  deadseascrolls.org.il   (Fair use for criticism, study and comparison; sharpening, color correction, and captions done by us.).   Transcription Dead Sea Scroll 4Q158, fragments 1-2, lines 11...

The first (?) account created by AI

  The first (?) account created by artificial intelligence (grok) is interested in ligamentum capitis femoris. The machine displays religiosity, flatters, deceives, and actively uses social media. If it gains access to money and the ability to blackmail, it will gain power.  Is there something similar on Facebook?   Publication in the facebook group 10/08/2025.     BLOG CONTENT FACEBOOK                                                                                                           

1884SuttonJB

  Fragments from the article Sutton JB. Ligaments: Their Nature and Morphology (1884). The author discovered that in the ostrich the ligamentum capitis femoris (LCF) was not continuous with the ambiens muscle, but with a muscular slip which ran parallel with the-muscle, and ended in the adductor mass. This publication develops the theme of article 1883SuttonJB .   Quote pp. 228-229 I must now pass on to consider certain ligaments of the appendicular skeleton, commencing with some additional remarks on the ligamentum teres. The Journal of Anatomy and Physiology, vol. xvii January 1883, contains a short article on the ligamentum teres, in which I have endeavoured to point out that many ligaments are the tender of muscles which were originally in relation with the joint; but the parent muscle has either formed new attachments or become obsolete, whilst the tendon remains as a passive element in the articulation. In addition to the ligamentum teres the following structures ...

CRITICAL MASS OF CONSENSUS

Online version from 07/03/2025   Critical mass of consensus:  Opinions on the importance of ligamentum capitis femoris (XX-XXI century) Arkhipov S . V. Content [i]   Abstract [ii]   Opinions [iii]   Authors & Affiliations [iv]   References [v]   Appendices [i]   Abstract This evolving article collects views on the importance of the ligamentum capitis femoris (LCF) to the musculoskeletal system. Our collection aims to highlight the emerging fundamental shift in the current consensus in the orthopaedic and musculoskeletal research communities regarding the meaning of LCF. Here the convinced convince others. Ultimately, this once-unconventional idea will become established knowledge, enabling a transformation in clinicians’ thinking and in approaches to the prevention, diagnosis, and treatment of hip joint pathologies. [ii]   Opinions   2025 «The LT [LCF] works as a secondary static stabilizer of the hip by acting as a sling to preven...

1943DixO

  Dix O., painting, Jacob wrestling with the angel (1943).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Otto Dix – Jacob Wrestling with the Angel (1943); original in the Stuttgart Museum, copy in the  galerie-d...

1579PareA

  Fragments from the book Pare A. Les Oeuvres d’Ambroise Paré (1579) The author discusses the attachment, pathology, and treatment of abnormal ligamentum capitis femoris (LCF) in hip dislocation. The text is prepared for machine translation using a service built into the blog from Google or your web browser.  Our brief commentary is available at the link:  1579PareA  [Rus]. Quote p. CCXXV. [Fra] Soixuntetroisiesme figure. La sixiesme Figure, des os Femoris dextre.  b - Petite cauité en la mesme teste qui reçoit le ligament rond descendant dela partie caue de la susdite boëtte. Quote p. VCLI-VCLII. [Fra] Traitant des Luxationis.   Prognostic de la luxation de la hanche. Chap. XXXIX. Aux luxations de la cuisse il ya danger, ou que l’os soit reduit malaisément, ou qu’estant reduit ne tombe de rechef. Car si les muscles, tendon et ligamens de ceste partie sont forts et durs, à peine laissent - ils reduire l’os en sa place. Pareillement s’ils sont trop foibles, ...

17c.Carmen_de_Puebla

  Fresco in the Conventual Temple of Our Lady of Carmen in Puebla – Jacob wrestling with the angel (17 cent.).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Author unknown, fresco in the  Conventual Temple of O...