Skip to main content

LCF in 2024 (May)

 

Lyra da Silva, C. C., Cardoso, J. R., Barbosa da Silva, D., Rodrigues da Silva, W. P., Ferreira, L. R., Moraes, V. R., ... & Borges, N. C. (2024). Anatomical and Imaging Aspects of the Hip Joint of the Giant Anteater (Myrmecophaga tridactyla). Preprints 2024, 2024041976.  [i]  preprints.org 

Hoffer, A. J., St George, S. A., Lanting, B. A., Degen, R. M., & Ng, K. G. (2024). Hip Labral and Capsular Repair Are Unable to Restore Distractive Stability in a Biomechanical Model. Arthroscopy: The Journal of Arthroscopic & Related Surgery. April 30, 2024. [ii]   arthroscopyjournal.org

Girardi, N. G., Kraeutler, M. J., Jesse, M. K., Lee, J. H., Genuario, J. W., & Mei-Dan, O. (2024). The Windshield Wiper Sign, An Instability-Related Osteochondral Defect of the Anterolateral Femoral Head. Arthroscopy: The Journal of Arthroscopic & Related Surgery. April 30, 2024.  [iii]   arthroscopyjournal.org

Golovakha, M. L., Orljanskі, W., Braunsteiner, T., Lisunov, M. S., & Pertsov, V. I. (2024). Using the Pipkin classification in determining the treatment tactics of femoral head fractures. Orthopaedics, Traumatology & Prosthetics / Ortopediia, Traumatologiia i Protezirovaniie, (1).   [iv]    otp-journal.com.ua

Boswell, M. V. (2024). Ambach M.A., Diaz-Molina M., Rogers C. Regenerative Therapy of Hip and Related Joints, Ligament, and Tendon. In: Navani A. et al. (Eds). Essentials of Regenerative Medicine in Interventional Pain Management. Cham: Springer, 2024: 267-286.  [v]   books.google

Kelly, M., & Secomb, J. (2024). Associations Between Hip Pathology, Hip and Groin Pain, and Injuries in Hockey Athletes: A Clinical Commentary. International Journal of Sports Physical Therapy19(5), 625-641.  [vi]   ncbi.nlm.nih.gov

Sarıkaya, B., Dolap, M. A., Kaptan, A. Y., Bozkurt, C., Yumuşak, N., Yigin, A., ... & Altay, M. A. (2024). Histological Structure and Immunohistochemical Properties of the Ligamentum Teres in Patients With Developmental Dysplasia of the Hip. Cureus, 16(5): e59748.  [vii]   cureus.com  ,  cureus.comPDF

Xia, B. Y., Pei, J. L., & Li, Q. G. (2024). A new penguin fossil from Seymour Island and reassessment of taxonomy and diversity of Eocene Antarctic penguins. Palaeoworld. 9 May 2024.  [viii]    sciencedirect.com

Averianov, A. O., Skutschas, P. P., Atuchin, A. A., Slobodin, D. A., Feofanova, O. A., & Vladimirova, O. N. (2024). The last ceratosaur of Asia: a new noasaurid from the Early Cretaceous Great Siberian Refugium. Proceedings of the Royal Society B, 291:20240537. [ix]   royalsocietypublishing.org

Mortensen, A. J., Featherall, J., Metz, A. K., Rosenthal, R. M., O’Neill, D. C., Froerer, D. L., ... & Aoki, S. K. (2024). The Role of the Hip Capsule in Restoring Stability in the Initial Phase of Hip Distraction: An In Vivo Analysis. Orthopaedic Journal of Sports Medicine, 12(5), 23259671241249719.   [x]   journals.sagepub.com

Tian, J., Li, Y., Tong, Y., Ji, L., Zhang, W., Zhong, X., ... & Bi, Q. (2024). Unveiling hotspots and trends in hip arthroscopy research: A bibliometric and visualized analysis (1900–2022). Medicine103(21), e38198.   [xi]    journals.lww.com

Buko, E. O., Armstrong, A. R., Laine, J. C., Tóth, F., & Johnson, C. P. (2024). Detection of early metaphyseal changes in a piglet model of Legg‐Calvé‐Perthes disease using quantitative mapping of MRI relaxation times. Journal of Orthopaedic Research. 7 May 2024.  [xii]    onlinelibrary.wiley.com

Barrett, P. M., Chapelle, K. E., Sciscio, L., Broderick, T. J., Zondo, M., Munyikwa, D., & Choiniere, J. N. (2024). A new Late Triassic sauropodomorph dinosaur from the Mid-Zambezi Basin, Zimbabwe. Acta Palaeontologica Polonica69(2), 227-241.    [xiii]    app.pan.pl

Park, C. J., Lee, C. Y., & Park, K. S. (2024) Ligamentum Teres Injury: Anatomy, Biomechanics, Diagnosis and Treatment. Journal of the Korean Orthopaedic Association59(2), 101-110.   [xiv]    jkoa.org

                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7


NEWS AND ANNOUNCEMENTS

 


[i] The femoral head ligament was typical, extending from the femoral head fovea to the acetabular fossa [24,25]. (24. König, H.E.; Liebich, H.G.; Maierl, J. Hindlimbs or pelvic limbs (membra pelvina). In Veterinary Anatomy of Domestic Animals: Textbook and Colour Atlas, 7th ed.; König, H.E., Liebich H.G., Eds.; Thieme: Sttutgart, Germany, 2021; pp. 243–303.  ;  25. Hermanson, J.W.; Lahunta, A., Evans, H.E. Arthrology. In Miller and Evans Anatomy of the Dog, 5th ed.; Hermanson, J.W.; Lahunta, A., Evans, H.E., Eds.; Elsevier: St. Louis, USA, 2020; pp. 375–443.)

Figure 4. Approximate image of the hip joint of M. tridactyla after adjacent musculature removal. Acetabular lip (arrowhead); femoral head ligament (thin arrow); articular cartilage of the femoral head contour (asterisk). Cr, cranial; Ca, caudal. (2024Lyra da SilvaCC et al.; CC BY 4.0 DEED, no change).

 

[ii] In addition to the capsule and labrum, there are multiple other contributing factors to the suction seal including the surrounding joint fluid, ligamentum teres, and extra-capsular muscle tone.

 

[iii]   … ligamentum teres tear all aided in establishing a diagnosis of symptomatic hip instability.

 

[iv] The choice of treatment tactics was carried out taking into account the type of fracture according to the Pipkin classification and clinical data. Systematized according to the following types: – I — dislocation of the hip with a fracture of the head of the femur below the point of attachment of the round ligament (pit of the head); – II — dislocation of the hip with a fracture of the head of the femur above the point of attachment of the round ligament; – III — type I or II in combination with a femoral neck fracture; – IV — type I or II together with a fracture of the acetabulum.

  

[v] The ligament of the femoral head, also known as ligamentum teres, originates from the obturator crest and inserts into fibrous capsule of the hip joint.

  

[vi] Recent research suggests that the development of cam morphology is related to the repetitive shear stresses experienced at the hip joint during adolescence from skating. This condition likely increases the potential for intra-articular and extra-articular injuries in these athletes later in their careers. Research also indicates that the hip joint mechanics during forward skating substantially increase the possibility of sustaining a labral tear compared to other sports. Such an injury can increase femoral head movement within the joint, potentially causing secondary damage to the iliofemoral ligament, ligamentum teres and joint capsule. These injuries and the high density of nociceptors in the affected structures may explain the high prevalence of hip and groin pain in hockey athletes.

The most common hip pathologies observed in elite hockey athletes include: femoroacetabular impingement (FAI), injuries to the non-contractile tissues including the labrum, iliofemoral ligament (IFL), and ligamentum teres (LT), as well as muscular injuries, such as core muscle injuries (CMI), hip flexor, and adductor injuries.

  

[vii] Introduction. This study aims to evaluate the histology of the ligamentum teres and its relationship with matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), which are involved in the destruction of extracellular matrix proteins in patients with developmental dysplasia of the hip (DDH).

Conclusions. The histological structure of ligamentum teres in patients with DDH shows moderate inflammation, fibrosis, neovascularization, hyalinization, and fatty infiltration regardless of age and radiological stage. ADAMTS-7, MMP-2, and MMP-9 correlate positively with the histological parameters of the ligamentum teres in patients with DDH.

  

[viii] The femoral head is approximately rounded and features a shallow pit known as the capital ligament fossa (as shown in Fig. 4I).

 

[ix] [There is an] … oblique ligament groove on the femoral head…

 

[x] The hip is further stabilized by static and dynamic stabilizers, including the fibrocartilaginous labrum, ligamentous hip capsule, ligamentum teres, and the musculature that courses across the hip joint.

  

[xi] Table 2 - The top 100 cited articles on hip arthroscopy.

25

Catastrophic failure of hip arthroscopy due to iatrogenic instability: can partial division of the ligamentum teres and iliofemoral ligament cause subluxation?

Mei-Dan O

Arthroscopy: The Journal of Arthroscopic and Related Surgery

Millennium Institute of Sport and Health

New Zealand

2012

35

Tears of the ligamentum teres prevalence in hip arthroscopy using 2 classification systems

Botser IB

The American Journal of Sports Medicine

Hinsdale Orthopedic Associates

USA

2011

Figure 4. The top 20 keywords with the strongest citation bursts. (Creative Commons CC BY, no change).

[xii] At 6 weeks of age (mean weight = 10.6 ± 1.8 kg, range = 8.1–14.5 kg), piglets underwent surgery to induce complete (100%) ischemia of the epiphysis of the femoral head by placement of a ligature around the femoral neck and transection of the ligamentum teres.

Complete femoral head ischemia was confirmed in 10/11 piglets as determined by the complete absence of signal enhancement on subtracted CE-MRI. One piglet had partial femoral head ischemia and thus was excluded from the data analysis. In all cases, femoral head ischemia was limited to the epiphysis of the femoral head, whereas the metaphysis was perfused.

  

[xiii] The head of the femur is oriented medially and slightly ventrally in anterior view (Fig. 2A1). It has a rounded, semicircular outline, but poor preservation makes interpretation of other features difficult. For example, there appears to be a distinct ligament groove on the anterior surface extending parallel to the medial margin of the process, but this could be the result of erosion or damage as there is no cortical bone in this area.


[xiv] Abstract. In the past, the ligamentum teres of the hip joint was considered as a vestigial structure and its removal during surgical procedures was deemed acceptable. However, with the recent advancements in hip arthroscopy, there has been an increased interest in ligamentum teres injuries. This has led to various studies revealing notable characteristics of this ligament. The purpose of this review article is to describe the role of the ligamentum teres as a stabilizing factor in the hip joint, focusing on its anatomical and biomechanical characteristics. In addition, by identifying the causes of ligamentum teres injuries, we aim to present appropriate diagnostic methods and treatment approaches. Ultimately, we intend to provide comprehensive guidelines for the ligamentum teres injuries.

 

Comments

Popular posts from this blog

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.  January 05, 2026 2018YoussefAO The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_OkaetR The authors demonstrated in the experiment that the strength of the LCF is sufficient to ensure early stability during hip joint reconstruction in children. January 04, 2026 2008 BacheCE _TorodeIP The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation .  2021PaezC_WengerDR The ar ticle analyzes the results of open reconstruction of LCF in dysplasia.   2008DoddsMK...

IMPROVING POSTOPERATIVE COMFORT...

  Enhancing  Posto perative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical mode...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

LCF in 2025 (June)

  LCF in 2025 ( June )   (Quotes from articles and books published in June 2025 mentioning the ligamentum capitis femoris)   Kuhns, B. D., Kahana-Rojkind, A. H., Quesada-Jimenez, R., McCarroll, T. R., Kingham, Y. E., Strok, M. J., ... & Domb, B. G. (2025). Evaluating a semiquantitative magnetic resonance imaging-based scoring system to predict hip preservation or arthroplasty in patients with an intact preoperative joint space.  Journal of Hip Preservation Surgery , hnaf027.    [i]     academic.oup.com   Iglesias, C.  J. B., García, B. E. C., & Valarezo, J. P. P. (2025) CONTROLLED GANZ DISLOCATION.   EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal. 11(5)1410-13. DOI: 10.36713/epra2013    [ii]       researchgate.net   Guimarães, J. B., Arruda, P. H., Cerezal, L., Ratti, M. A., Cruz, I. A., Morimoto, L. R., ... & Ormond Filho, A. G. (2025). Hip Microins...

Catalog. Classifications of LCF Pathology

  The classifications are intended to systematize of ligamentum capitis femoris pathology and assist in the development of general approaches to its description, registration, analysis and treatment.   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, histology, pathological anatomy, pathology, trauma INTRODUCTION In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. The development of arthroscopic surgery has made it possible to identify various, previously undescribed types of LCF pathology, which prompted the development of various modern classifications based on intraoperative observations. Analysis of literature data and our own morphological observations allowed us to propose a General Classification of the Ligamentum Teres Pathology, which has the form of a collection of classifiers, as well as a Classification of Functions of the Ligamentum Teres. The ...

1834MitchellE_KnoxR

Description and drawings of the proximal attachment and blood supply of the ligamentum capitis femoris (LCF) from book Mitchell E, Knox R. Engravings of the ligaments (1834 ). PLATE VI   PLATE VI. … 49. The round ligament of the hip-joint, which arises from the sinus in the bottom of the acetabulum and descends into the head of the femur. 50. A portion of it which is thinner and membranous. 51. Portion of a ligament which arises from the outer surface of the ischiatic cavity and surrounds its neck as far as the notch of the acetabulum; there however it makes its way into the acetabulum, passing under the arch of the cotyloid ligament. 52. Branch of the obturator artery. 53.   Two twigs which penetrate into the cotyloid cavity along with the ligament 51, to mingle with the round ligament.   PLATE VII PLATE VII. Fig. 1. … 19, 19. Remarkable glands, which are concealed in the sinus of the acetabulum. 20. Origin of the exterior ligament which arises fr...

11th-15th Century

   11th-15th Century Catalog of archived publications of the specified period        11th century 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 1012-1024Avicenna   The author writes about the localization and  variant of the pathology LCF, leading to hip dislocation. 1039-1065Giorgi Mtatsmindeli   The translator mentions the LCF damage, and notes its presence in animals. 12 th century 1120-1140Judah Halevi   The author mentions LCF (גיד) of mammals. 1176-1178(a)Rambam  The author mentions the pathology of LCF (גיד) in humans and points out the presence of this structure in animals. 1176-1178(b)Rambam  The author writes about the localization of LCF (גיד) ) and distinguishes it from a tendon,   blood vessel or nerve. 1185-1235David Kimchi  The author writes about the localization, purpose, and injury of the LCF (גיד), and also talks abo...

1724FabriciusJA

Fragments from the book Fabricius JA. Bibliothecae Graecae volume duodecimum (1724). The author quotes the Byzantine physician Theophilus Protospatharius, who supposedly lived between the 7th and 10th centuries. Selected passages provide views on the normal anatomy of the ligamentum capitis femoris (LCF) and its inherent connective function.   [Grc] θεοφιλος ο Πρωτοσπαθάριος . Περὶ τῆς τοῦ ανθρώπου κατασκευῆς . Βιβλιον Ε . XIII, [p. 892] (see fig.) [Lat] Theophilus Protospatharius. De corporis humani fabrica, Liber quintus, Cap. XIII [p. 892] 1) Dei erga homines amor ex heminae fundo teretem nervum promisit, cartilaginosum vinculum femoris capiti insertum adstringensque, ne facile elabatur:» 2) inde ex heminae oris aliae copulae oriuntur, totum femoris caput in orbem constringentes, non teretes & solae, qualis quae ex fundo porrigitur, sed latae, valenter que heminae oras ad commissurae praesidium ambientes.   Translation [Eng] 1) For the sake ...

190-230Mishnah Chullin

  Tractate Mishnah Chullin was written between about 190 - 230 in Israel and discuss laws related to consumption of meat. The selected quotes talk about the presence of ligamentum capitis femoris (LCF) in different animals, its location and distal attachment site. See our commentary at the link: 190-230Mishnah Chullin [Rus]. Quote 1. [Heb] Mishnah Chullin 7:1 (original source:  sefaria.org ) Quote 2. [Heb] Mishnah Chullin 7:2 (original source:  sefaria.org ) Quote 3. [Heb] Mishnah Chullin 7:3 (original source:  sefaria.org ) Quote 4. [Heb] Mishnah Chullin 7:4 (original source:  sefaria.org ) Quote 5. [Heb] Mishnah Chullin 7:5 (original source:  sefaria.org ) Quote 6. [Heb] Mishnah Chullin 7:6 (original source:  sefaria.org ) Translation Quote 1. [Eng] Mishnah Chullin 7:1 The prohibition of eating the sciatic nerve applies both in Eretz Yisrael and outside of Eretz Yisrael, in the presence of, i.e., the time of, the Temple and not in the presence of th...