Skip to main content

LCF in 2024 (October)

 

Publications about the LCF 2024 (October).

 

Gänsslen, A., Lindtner, R. A., Krappinger, D., & Franke, J. (2024). Pipkin fractures: fracture type-specific management. Archives of Orthopaedic and Trauma Surgery. 1-14. [i] link.springer.com

 

Vesey, R. M., MacDonald, A. A., Brick, M. J., Bacon, C. J., Foo, G. L., Lu, M., ... & Woodward, R. M. (2024). Imaging characteristics of hip joint microinstability: a case–control study of hip arthroscopy patients. Skeletal Radiology. 05 Oct: 1-11. [ii] link.springer.com

 

Wu, W., Liu, M., Zhou, C., Mao, H., Wu, H., Wu, Z., & Ma, C. (2024). Efficacy of Outside‐In Hip Arthroscopy without Traction in the Treatment of Hip Synovial Osteochondromatosis. Orthopaedic Surgery. 9999:n/a. [iii] onlinelibrary.wiley.com

 

Yang, J., Zhang, T., Zhu, X., He, Z., Jiang, X., & Yu, S. (2024). miRNA-223-5p Inhibits Hypoxia-induced Apoptosis of BMSCs and Promotes Repair in Legg-Calvé-Perthes Disease rabbit model by Targeting CHAC2 and Activating the Wnt/β-catenin Signaling Pathway. Research Square. doi.org/10.21203/rs.3.rs-5035545/v1. [iv] researchsquare.com

 

Conyer, R. T., Cleary, E. J., Wang, A. S., Boos, A. M., Crowe, M. M., Economopoulos, K. J., ... & Hevesi, M. (2024). A Multicenter Analysis of 3 Decades of Hip Arthroscopy: Evolving Techniques and Growing Patient Volumes From 1988 to 2022. Orthopaedic Journal of Sports Medicine. 10, 23259671241277793. [v]  journals.sagepub.com

 

Patel, S., Russo, M., Miller, D., Martin, H., Deb, S., & De, E. (2024). 298-Video Screening Exam to Determine Hip Etiologies of Chronic Pelvic Pain. Continence. 12, 101640. [vi] sciencedirect.com

 

Zhang, S., Gao, G., Zhou, X., Du, C., Zhu, Y., He, T. C., & Xu, Y. (2024). Development of a novel rabbit model for femoroacetabular impingement through surgically induced acetabular overcoverage. Journal of Orthopaedic Research. 13 October, doi.org/10.1002/jor.25994. [vii] onlinelibrary.wiley.com

 

Gao, G., Zhou, C., Zhou, G., He, S., Ju, Y., Wang, J., & Xu, Y. (2024). Clinical Outcomes of the Arthroscopic Capsular Suture-Lifting Technique in the Treatment of Femoroacetabular Impingement in Patients With Borderline Developmental Dysplasia of the Hip. Orthopaedic Journal of Sports Medicine. 12(10), 23259671241275661. [viii] journals.sagepub.com

 

Gianechini, F. A., Meso, J. G., Méndez, A. H., Garrido, A. C., & Filippi, L. S. (2024). A new maniraptoran femur with alvarezsaurian affinities from the Plottier Formation (Coniacian-Santonian), northern Patagonia. Historical Biology. 1-11. [ix]  tandfonline.com

  

KURTULUŞ, B. (2024). Comparison of treatment methods in patients with developmental dysplasia of the hip. Turkish Journal of Medical Sciences. 54(5), 1060-1070. [x] journals.tubitak.gov.tr

  

Sun, S., Li, Z., Zhang, C., Wu, Z., Guo, L., Yang, T., ... & Chen, D. (2024). Investigation of the Bone Repair Mechanism in Femoral Head Necrosis Promoted by Spleen-invigorating Huo-Gu Formula Via the MPET Model. Research Square. doi.org/10.21203/rs.3.rs-5241023/v1. [xi] researchsquare.com

 

Dharmshaktu, G. S. (2024). Ligament Teres Injury: An Uncommon Hip-Hop Hurt. Matrix Science Medica. 8(4), 95-96. [xii] Journals.lww.com

 

Kynigopoulou, Z., Shelley, S. L., Williamson, T. E., & Brusatte, S. L. (2024). The post-cranial anatomy and functional morphology of Conoryctes comma (Mammalia: Taeniodonta) from the Paleocene of North America. PloS one. 19(10), e0311053. [xiii] journals.plos.org

 

Wiak, I., Banyś, F., Czyżewski, F., Bochen, K., Dudek, S., Jasiński, F., ... & Wojtach, K. (2024). Hip Dysplasia in Adults: Surgical Correction vs. Conservative Treatment Options. Quality in Sport. 29, 55566-55566. [xiv] apcz.umk.pl

 

Roy, T., BASu, R., & BAiSAkhi, D. A. S. Morphological and Morphometric Variations of Fovea Capitis Femoris: A Cross-sectional Study from Kolkata, West Bengal, India. International Journal of Anatomy, Radiology and Surgery. 2024; Sep, 13(5): AO14-AO18. [xv] ijars.net

  

Domb, B. G., Wallace, I. A., & Becker, N. (2024) Editorial Commentary: Arthroscopic Treatment of Mild Hip Dysplasia Can Result in Excellent Outcome and Avoid More Invasive Periacetabular Osteotomy. Arthroscopy: The Journal of Arthroscopic and Related Surgery. doi.org/10.1016/j.arthro.2024.10.023. [xvi] arthroscopyjournal.org

 

                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7



[i] presents a Pipkin type II fracture with the femoral head fragment attached to the ligament of head of femur (ligamentum teres) (Fig. 1). …

Reason for an irreducible joint may be an avulsed ligament of the head of the femur, …

 

[ii] Labral tears, chondral loss, abnormal ligamentum teres, anterior capsule thinning, iliocapsularis to rectus femoris ratio, posterior crescent sign, cliff sign, and femoro-epiphyseal acetabular roof (FEAR) index were not associated with microinstabillity.

 

The function and significance of the ligamentum teres are debated; however, it is increasingly recognized as a secondary stabilizer of the hip joint, and biomechanical and surgical studies have suggested ligamentum teres injuries are associated with joint instability [40, 41]. While complete tears of the ligamentum teres are relatively rare, with the prevalence of up to 1.5% reported at arthroscopy [42], partial tears and other abnormalities such as hyperplasia are commonly reported at arthroscopy. Abnormal ligamentum teres on MR was not associated with hip microinstability in this study.

 

However, the other imaging findings on MR showed only fair or moderate agreement, except for abnormal ligamentum teres which showed no agreement, when assessed by experienced musculoskeletal radiologists. This is consistent with the published literature that has documented that many of these findings can be challenging to accurately detect on MR with limited or even poor reliability; diagnosis of ligamentum teres tear, especially chronic and partial tears, may be challenging on MR with poor sensitivity and specificity [24, 50, 51].

24. Blankenbaker DG, De Smet AA, Keene JS, Munoz del Rio A. Imaging appearance of the normal and partially torn ligamentum teres on hip MR athrography. Am J Roentgenol. 2012;199:1093–8.
40. Cerezal L, Kassarjian A, Canga A, Dobado MC, Montero JA, Llopis E, et al. Anatomy, biomechanics, imaging, and management of ligamentum teres injuries. Radiographics. 2010;30:1637–51.
41. Bardakos NV, Villar RN. The ligamentum teres of the adult hip. J Bone Joint Surg Br. 2009;91:8–15.
42. Chahla J, Soares EAM, Devitt BM, Peixoto LP, Goljan P, Briggs KK, et al. Ligamentum teres tears and femoroacetabular impingement: prevalence and preoperative findings. Arthrosc J Arthrosc Relat Surg. 2016;32:1293–7. 
50. Devitt BM, Philippon MJ, Goljan P, Peixoto LP, Briggs KK, Ho CP. Preoperative diagnosis of pathologic conditions of the ligamentum teres: is MRI a valuable imaging modality? Arthrosc J Arthrosc Relat Surg. 2014;30:568–74.
51. Datir A, Xing M, Kang J, Harkey P, Kakarala A, Carpenter WA, et al. Diagnostic utility of MRI and MR arthrography for detection of ligamentum teres tears: a retrospective analysis of 187 patients with hip pain. Am J Roentgenol. 2014;2203:418–23.

 

[iii] A complete diagnostic hip arthroscopy requires traction, especially for a comprehensive inspection of the direct weight-bearing cartilage, acetabular fossa, and ligamentum teres. Therefore, arthroscopy without traction was not effective in diagnosing and treating hip central compartment diseases such as FAI, acetabular cartilage injury, and loose bodies in the central compartment.

 

[iv] Wang et al. developed a juvenile rabbit model by disrupting the femoral round ligament [6]. Currently, many scholars predominantly use a piglet model of ischemic necrosis, which is established by placing a non-absorbable ligature tightly around the femoral neck to cut off the blood supply to the capital femoral epiphysis [7,37]. Due to the limitations of space, large-scale rearing of piglets is not feasible; therefore, we established a Perthes disease model using rabbits. Similar to the piglet model of Perthes disease, we cut the ligament of the femoral head and tightly ligated the base of the femoral neck with non-absorbable sutures. This method successfully created a rabbit model of Perthes disease.

 

The femoral head was dislocated, and the Ligamentum teres was cut, severing the blood supply. Using a curved clamp, non-absorbable sutures were placed around the femoral neck, severing the vascular supply. The hip was then reduced, and the wound was sutured.

6. Wang Z, He R, Tu B, et al. Drilling combined with adipose-derived stem cells and bone morphogenetic protein-2 to treat femoral head epiphyseal necrosis in juvenile rabbits[J]. Current Medical Science, 2018, 38(2): 277-288.
7. Martínez-Álvarez S, Galán-Olleros M, Azorín-Cuadrillero D, et al. Intraosseous injection of mesenchymal stem cells for the treatment of osteonecrosis of the immature femoral head and prevention of head deformity: A study in a pig model[J]. Science Progress, 2023, 106(2): 00368504231179790.
37. Upasani V V, Jeffords M E, Farnsworth C L, et al. Ischemic femoral head osteonecrosis in a piglet model causes three dimensional decrease in acetabular coverage[J]. Journal of Orthopaedic Research®, 2018, 36(4): 1173-1177. 


[v] Arthroscopic procedures included diagnostic arthroscopy, labral debridement, labral repair, labral reconstruction, capsular repair, cam resection, fractional iliopsoas lengthening, loose body removal, ligamentum teres debridement, trochanteric bursectomy, and abductor repair.

Figure 7. Trends in proportion of loose body removal, ligamentum teres debridement, iliopsoas release or fractional lengthening, and lateral hip procedures in true primary hip arthroscopies by year. (This open-access article is published and distributed under the Creative Commons Attribution - NonCommercial - No Derivatives License (https://creativecommons.org/ licenses/by-nc-nd/4.0/)

  

[vi] Flexion, adduction, and internal rotation of the leg in the supine position causing pelvic pain can indicate a premature osseous abutment (CAM) deformity. A supine flexion, adduction, internal rotation test can be used to determine internal hip impingement. The FABERS (flexion, abduction, and external rotation) can be used to screen the ligament of teres function, femoral anteversion, SI joint or some pubofemoral ligament contribution.

 

[vii] Upon completion of the imaging assessment, the joint capsule was incised and the round ligament was severed to expose the articular surface.

 

Our study confirmed that the novel rabbit FAI model created acetabular over coverage and produced articular cartilage injury at the impingement zone.

 

[viii] Arthroscopic procedures are detailed in Table 2.

Ligamentum teres debridement:  

Suture-Lifting Group 6 (7.8%) 

Control Group   5 (7.5%)

(Data are presented as numbers of patients, with percentages in parentheses.)

 

[ix] Other differences with MAU-Pv-PH-453 are the presence of a trochanteric shelf on the proximal and lateral surface of the bone, a posterior trochanter on the proximal posterolateral surface, and a groove for the ligamentum capitis femoris ...

 

[x] According to the findings detected during intraoperative OR (open reduction), the acetabulum was shallow in 52 (65.82%) hips. The teres ligament was intact and thickened in 62 (78.48%) hips. The ligamentum teres was ruptured in four (5.06%) and thinned in 13 (16.45%) hips. The limbus was inverted in 12 (15.18%) hips, everted in 46 (58.22%) hips, and normal in 21 (26.58%) hips. The posterior wall was inadequate in 18 (22.78%) hips. All patients treated with OR underwent iliopsoas tenotomy. They also all underwent careful capsulorrhaphy. Partial excision was performed in some of the hypertrophic capsules. If stabilization was deemed sufficient after OR, no additional intervention was performed.


[xi] The major branch group of the medial circumflex femoral artery, the retinacular artery, connects with the artery of the ligamentum teres within the femoral head, forming epiphyseal and metaphyseal arterial networks.

 

[xii] A 32-year-old male presented with an acute painful left hip region for the last 2 months following a minor misstep during hip-hop routine. The pain increases with weight-bearing and gets relieved by rest and pain medications. Radiographs were unremarkable with no underlying bony abnormality. Magnetic resonance imaging (MRI) revealed no bony injury except hyperintensity or edema surrounding the LT with the contralateral side unaffected [Figure 1]. Apart from the injury, there was also the anatomical difference between both the fovea capitis with the affected left side being deep and notched as compared to the right side.

On the basis of clinical and radiological findings, diagnosis of LT injury or sprain was made. A period of conservative methods including rest to the extremity and crutch use was advised along with pain medication on as and when required basis. After a period of 5 weeks, clinical improvement was noted, and with another 2 weeks of protected ambulation, the patient was having painless ambulation and range of motion.

...

This briefcase snippet is described here for the recognition of uncommon LT injury by appropriate investigation and clinical correlation. We advocate suspecting and keeping this injury as an uncommon differential diagnosis in cases with unexplained hip pain following the injury related with sports or recreational activity. Appropriate diagnosis results in optimal management, and the use of MRI helps in identifying subtle injuries of the ligamentous origin.


[xiii] Conoryctes has a continuous lunate surface that is subequal in width as seen in Stylinodon. There is a foramen in the pubic area of the acetabular fossa in Stylinodon where the ligamentum teres attached; Conoryctes lacks this foramen.

  

[xiv] Although hip arthroscopy was controversial until recently, advancements in tools and surgical techniques have made it an increasingly common method in orthopedics. This procedure allows for detailed visualization of the cartilage surfaces of the femur and acetabular labrum, and provides a view of the ligamentum teres, synovial membrane, and peri-trochanteric spaces.

 

[xv] CONCLUSION(S)

A detailed study of the morphology and morphometry of the FCF (Fovea Capitis Femoris) in the West Bengal population revealed that the most common shape of the fovea is oval, and its most frequent position is in the posterior-inferior quadrant of the femoral head. The mean values for the transverse diameter, vertical diameter, and DF were found to be 1.53±0.367 cm, 1.28±0.303 cm, and 0.304±0.141 cm, respectively. This data will contribute to the existing knowledge of anatomists, radiologists, and surgeons and may be useful in the planning and execution of surgical interventions involving the proximal end of the femur.


[xvi] Primary stability of the hip comes from bony coverage of the femoral head, influenced by acetabular version and femoral antetorsion. In addition, soft tissue structures such as the acetabular labrum, the ligamentum teres, and the hip capsule play a significant role in maintaining joint stability. Untreated hip instability may lead to pathological force transmission between the acetabular socket and femoral head, and subluxation resulting in osteoarthritis.

 

Comments

Popular posts from this blog

LCF in 2025 (December)

  LCF in 2025 ( December)   (Quotes from articles and books published in  December  2025 mentioning the ligamentum capitis femoris)   Sarassa, C., Aristizabal, S., Mejía, R., García, J. J., Quintero, D., & Herrera, A. M. (2025). Intraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance Stability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes. Journal of Pediatric Orthopaedics , 10-1097.   [i]      journals.lww.com   Kampouridis, P., Svorligkou, G., Spassov, N., & Böhme, M. (2025). Postcranial anatomy of the Late Miocene Eurasian hornless rhinocerotid Chilotherium. PLoS One , 20 (12), e0336590.     [ii]      journals.plos.org   Burdette, T. N., Hsiou, C. L., McDonough, S. P., Pell, S., Ayers, J., Divers, T. J., & Delvescovo, B. Sidewinder syndrome associated with complete rupture of the ligamentum capitis ossis femoris in a horse. Eq...

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

2008DoddsMK_McCormackD

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Dodds MK et al . Transarticular stabilization of the immature femoral head: assessment of a novel surgical approach to the dislocating pediatric hip in a porcine model (2008). The article describes an experiment of reconstruction of ligamentum capitis femoris (LCF) in pigs with the formation of a femoral tunnel. The text in Russian is available at the following link:  2008DoddsMK_McCormackD . [ii]   Original text Abstract Background: Acetabular dysplasia and hip instability are common in neuromuscular diseases such as spina bifida and cerebral palsy due to deranged muscle function around the hip. Occasionally in developmental dysplasia of the hip, persistent instability may be difficult to manage by standard treatments. It i...

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.  January 05, 2026 2018YoussefAO The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_OkaetR The authors demonstrated in the experiment that the strength of the LCF is sufficient to ensure early stability during hip joint reconstruction in children. January 04, 2026 2008 BacheCE _TorodeIP The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation .  2021PaezC_WengerDR The ar ticle analyzes the results of open reconstruction of LCF in dysplasia.   2008DoddsMK...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

2012FrederickP_KelmanDC

   Invention (Patent): Frederick P, Belew K, Jasper L, Gatewood J, Gibson L, Masonis J, Cooper M, Kelman DC. Methods and apparatus for FAI surgeries.  US20120283840A1   (2012).   US20120283840A1 US Inventors: Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman Current Assignee: Smith and Nephew Inc Worldwide applications 2010 KR JP RU BR CA US CN EP CN WO AU 2014 US 2016 AU 2017 AU Application US13/202,612 events: 2010-02-25 Заявка подана Smith and Nephew Inc 2010-02-25 Приоритет US13/202,612 2012-11-08 Публикация US20120283840A1 2014-12-02 Заявка удовлетворена 2014-12-02 Публикация US8900320B2 Статус: Активный 2031-06-08 Измененный срок действия   Methods and apparatus for FAI surgeries Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman   Abstract A partial rim implant for an acetabulum in a pelvic bone comprise...

2011HosalkarHS_WengerDR

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Hosalkar HS et al . Isocentric reattachment of ligamentum teres: a porcine study (2011). The article describes a method of isocentric fixation of the proximal end of the ligamentum capitis femoris (LCF) during plastic surgery in an experiment on pigs. The text in Russian is available at the following link: 2011HosalkarHS_WengerDR . [ii]   Original text Abstract Background: Recent reports reveal interest in the mechanical importance of ligamentum teres (LT) in hip dislocation. In the previously established procedure of anteroinferior acetabular LT reattachment in developmental dysplasia of the hip, the LT functions as a check-rein, showing promising results. However, this position of reattachment could potentially limit motion. Th...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

2023AbibeRB_SaundersWB

  Article: Abibe RB et al. Ligamentum teres reconstruction using autogenous semitendinosus tendon with toggle technique in rabbits (2023). The article describes experimental reconstruction of ligamentum capitis femoris (LCF) in rabbits. The text in Russian is available at the following link:  2023AbibeRB_SaundersWB . Ligamentum teres reconstruction using autogenous semitendinosus tendon with toggle technique in rabbits Abibe RB, Rahal SC, Reis Mesquita LD, Doiche D, da Silva JP, Mamprim MJ, Pinho RH, Battazza A, Alves CEF, Saunders WB   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Background Ligamentum teres (LT) has traditionally been considered a vestigial or redundant structure in humans; however, based on new studies and the evolution of hip arthroscopy, the LT injury has been viewed as a source of hi...

2007WengerD_OkaetR

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Wenger D et al . The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children’s hip surgery (2007). The authors demonstrated in the experiment that the strength of the ligamentum capitis femoris (LCF) is sufficient to ensure early stability during hip joint reconstruction in children. The text in Russian is available at the following link: 2007WengerD_OkaetR . [ii]   Original text Abstract The anatomic and histological characteristics of the ligamentum teres and its vascular contributions to the femoral head have been well described. The function of the ligamentum teres remains poorly understood. Although excision is the current standard in treating complete developme...