Skip to main content

LCF in 2025 (January)

 

LCF in 2025 (January)Quotes from articles and books published in March 2025 mentioning the ligamentum capitis femoris.


Alany, A. M. S., Rasul, D., Berzenji, A. I. H., & Berzenji, A. (2025). Early Outcomes of Arthroscopic Versus Open Reduction for Developmental Dysplasia of the Hip in Children: A Randomized Controlled Trial. Cureus17(1). [i]   assets.cureus.com

 

Lovelace, D. M., Kufner, A. M., Fitch, A. J., Curry Rogers, K., Schmitz, M., Schwartz, D. M., ... & Teran, R. (2025). Rethinking dinosaur origins: oldest known equatorial dinosaur-bearing assemblage (mid-late Carnian Popo Agie FM, Wyoming, USA). Zoological Journal of the Linnean Society203(1), zlae153. [ii]  academic.oup.com

 

Rashwan, A. S., El-Desouky, M., Elbarbary, H., Madbouly, M. A. E., & Khedr, A. (2025). Arthroscopic-assisted reduction for Developmental Hip Dysplasia (DDH) through the sub-adductor and anterolateral portals; A 24-month follow-up prospective descriptive study. BMC Musculoskeletal Disorders26(1), 27.  [iii]  bmcmusculoskeletdisord.biomedcentral.com

 

Kellermann, M., Cuesta, E., & Rauhut, O. W. (2025). Re-evaluation of the Bahariya Formation carcharodontosaurid (Dinosauria: Theropoda) and its implications for allosauroid phylogeny. PloS one20(1), e0311096.  [iv]  journals.plos.org

 

Martonos, C. O., Gudea, A. I., Rawlins, G., Stan, F. G., Lațiu, C., & Dezdrobitu, C. C. (2025). Morphological, Morphometrical and Radiological Features of the Pelvic Limb Skeleton in African Green Monkeys (Chlorocebus sabaeus) from Saint Kitts and Nevis Islands. Animals15(2), 209.  [v]   mdpi.com

 

Wellauer, H., Heimann, A. F., Stetzelberger, V. M., Schwab, J. M., & Tannast, M. (2025). Joint Preservation Surgeries Utilizing Surgical Dislocation of the Hip. In Osteonecrosis (pp. 443-454). Singapore: Springer Nature Singapore.   [vi]  link.springer.com

 

Domb, B. G., Kufta, A. Y., Kingham, Y. E., Sabetian, P. W., Harris, W. T., & Perez-Padilla, P. A. (2025). Sex-Based Differences in the Arthroscopic Treatment of Femoroacetabular Impingement Syndrome: 10-Year Outcomes With a Nested Propensity-Matched Comparison. The American Journal of Sports Medicine, 03635465241302806.  [vii]  journals.sagepub.com

 

Marty, E. W., Girardi, N. G., Kraeutler, M. J., Lee, J. H., Keeter, C., Merkle, A. N., & Mei-Dan, O. (2025). Arthroscopic Bone Grafting of Deep Acetabular Cysts in Hip Preservation Surgery: A Matched Case-Control Study. Orthopaedic Journal of Sports Medicine, 13(1), 23259671241310453.  [viii]  journals.sagepub.com

 

Wang, L., Luo, Y., Qiu, X., Cheng, L., Ma, K., Guan, J., ... & Zhao, D. (2025). Analysis of Animal Models of Traumatic Osteonecrosis of the Femoral Head Based on Blood Supply: A Literature Review. Orthopaedic Surgery.   [ix]   onlinelibrary.wiley.com

 

Yang, J., Zhang, T., Zhu, X., He, Z., Jiang, X., Yu, S., & Gu, H. (2025). MiRNA-223-5p inhibits hypoxia-induced apoptosis of BMSCs and promotes repair in Legg-Calvé-Perthes disease by targeting CHAC2 and activating the Wnt/β-catenin signaling pathway. PloS one, 20(1), e0315230. [x]  journals.plos.org 

 

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

   


[i] The arthroscopic reduction procedure is performed using a 4.5 mm arthroscope with both 30° and 70° optics to enhance the identification of anatomical structures. The first stage involves capsular release anteriorly, anterosuperiorly, and anteroinferiorly to relax soft tissues. Obstacles to reduction, such as the pulvinar, hypertrophic ligamentum teres, transverse acetabular ligament, and capsular contractions resulting from hourglass deformity, are removed.

FIGURE 1: Arthroscopic-assisted reduction for developmental dysplasia of the hip. (A) Preoperative marking and positioning: the patient is in the supine position with traction applied to the affected leg to facilitate hip joint access; (B) intraoperative arthroscopic view: the ligamentum teres. This arthroscopic image captures the ligamentum teres (labeled "Lig. teres") prior to its transection. The femoral head ("Head") and transverse acetabular ligament ("TAL") are also visible; (C) arthroscopic portal placement. The image depicts the surgical setup during arthroscopy. Multiple portals are established to accommodate the arthroscope and instruments. (This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0.) 

The reduced redislocation rate observed with arthroscopic techniques is likely attributable to the meticulous removal of intra-articular obstacles, such as the hypertrophic ligamentum teres and pulvinar, and the ability to observe direct visualization of reduction.

 

[ii] The proximal end of a left femur (UWGM 7549) possesses several dinosaurian and saurischian features but is too incomplete for a referral beyond Saurischia on its own (). The proximal surface of the femur appears to be slightly abraded revealing trabecular bone and hindering the identification of a transverse groove, such as that seen in UWGM 7407 () and widespread among early-diverging sauropodomorphs and dinosauromorphs more generally. There are also several cracks present in this element, one of which passes through the position that would be occupied by a ligament sulcus between the anteromedial and posteromedial tubera. The posteromedial tuber is small and rounded, and the larger anteromedial tuber is also rounded. The anterolateral tuber forms a broad, rounded profile along the anterolateral surface of the femur in proximal view. The head of the femur is offset from the shaft resulting in a concave emargination just ventral to the head, common among all dinosaurs. 


[iii] Using combined anterolateral and sub-adductor portals offers better visualization of the acetabular cavity and instrumentation during addressing pulvinar tissue, ligamentum teres, and transverse acetabular ligament (TAL) [15]. 

15. Eberhardt O, Fernandez FF, Wirth T. Arthroscopic reduction of the dislocated hip in infants. J Bone Joint Surg Br. 2012;94–B(6):842–7. https://doi.org/10.1302/0301-620x.94b6.28161.

 

Fig. 3. A: Visualization of ligamentum teres, B: Cutting ligamentum teres from its femoral attachment (This article is licensed under a Creative Commons Attribution 4.0 International License.)

 

The hip was internally rotated to move the femoral head posteriorly, and a pick-up was used to pull the capsule. We then created the anterolateral portal by making an incision directly into the capsule at the inferomedial aspect of the head and introduced a 2.7-mm, 30-degree scope through it to visualize the femoral head. We used an arthroscopic pump and the pressure was inflated to 30 mmHg. The hypertrophied ligamentum teres was seen by rotating the hip internally and externally and then followed till visualizing the transverse acetabular ligament (TAL) and the acetabulum. A needle was introduced through the incision used for the adductor tenotomy in a cranial and anterior direction to be visualized inside the hip joint. The capsule was pierced by a straight hemostat placed just anterior to the needle to be visualized into the joint, thus developing the sub-adductor portal, which was used for instrumentation.

The ligamnetum teres was followed and visualized as close as possible to its femoral attachment, which may be aided by doing some external and internal rotation of the hip. Another useful maneuver could be performed by the assistant by stabilizing the hip with one hand and doing hip abduction with distraction of the femur to create more working space. The ligamentum teres was then cut using a basket introduced through the sub-adductor portal (Fig. 3).

 

The hip was internally rotated to move the femoral head posteriorly, and a pick-up was used to pull the capsule. We then created the anterolateral portal by making an incision directly into the capsule at the inferomedial aspect of the head and introduced a 2.7-mm, 30-degree scope through it to visualize the femoral head. We used an arthroscopic pump and the pressure was inflated to 30 mmHg. The hypertrophied ligamentum teres was seen by rotating the hip internally and externally and then followed till visualizing the transverse acetabular ligament (TAL) and the acetabulum.

 

The ligamentum teres was followed and visualized as close as possible to its femoral attachment, which may be aided by doing some external and internal rotation of the hip. Another useful maneuver could be performed by the assistant by stabilizing the hip with one hand and doing hip abduction with distraction of the femur to create more working space. The ligamentum teres was then cut using a basket introduced through the sub-adductor portal (Fig. 3).

 

While still using the same portals, an arthroscopic hook was introduced now through the sub-adductor portal. The ligamentum teres was followed proximally to the direction of the acetabulum and used as a guide to the TAL. The TAL was identified by sliding the hook along the acetabulum until it fell into the acetabular notch inferiorly. The basket was then introduced to cut the TAL anterior and posterior to the attachment of the ligamentum teres (Fig. 4). The ligamentum teres with the TAL were extracted by a grasper through the sub-adductor portal out of the hip joint. The hook was introduced once again to confirm that the TAL was adequately released. Now the hook should follow the acetabulum until it falls into the acetabular notch. If the hook was pulled, there should not be any soft tissue resistance, ensuring successful TAL release.

 

While Eberhardt et al. used the same portals we used, but they didn’t switch portals as they used the sub-adductor portal as a viewing portal while the procedure was performed through the anterolateral portal. In our procedure, we resected the femoral attachment of ligamentum teres through the sub-adductor portal while its acetabular attachment, TAL, and pulvinar tissue were removed through the anterolateral portal [15]. 

 

[iv] Furthermore, the femoral head of SNSB-BSPG 1922 X 46 exhibited a notable rounded dorsal expansion which is not present in any of the aforementioned carcharodontosaurids. Stromer described a distinct ligament groove on the posterior medial surface of the femoral head, directly comparing it to the condition in Allosaurus. A groove like this is common in allosauroids and for example present in Concavenator or Mapusaurus [1267].

12. Coria RA, Currie PJ. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas. 2006;28: 71–118.View Article  Google Scholar

67. Cuesta E, Ortega F, Sanz JL. Appendicular osteology of Concavenator corcovatus (Theropoda: Carcharodontosauridae) from the Lower Cretaceous of Spain. J Vert Paleontol. 2018;38: (1)–(24). View Article  Google Scholar

 

[v]  In all studied specimens, a small cranial convexity of the shaft could be observed. The femoral head (Caput ossis femuris) (Figure 5) is the articular structure of the proximal end and has a spherical aspect with a medial orientation. This structure articulates with the acetabulum. The Fovea capitis has an elliptical aspect with a transversal diameter smaller than the longitudinal diameter and a ventrocaudal position regarding the center point of the femoral head. Between this structure and the acetabular fossa, the ligament of the head of the femur (Lig. capitis ossis femoris) can be observed in fresh specimens. 

Figure 5. Anatomical features of the femur. Cranial aspect (A), Caudal aspect (B), Details of the medial part of proximal extremity (C), Details of the cranial part of distal extremity (D), Details of the caudal part of proximal extremity(E), Femur- details of the caudal part of distal extremity (F) 1. Femoral shaft; 2. Femoral head; 3. Fovea for ligament of head of femur; 4. Neck of femur; 5. Greater trochanter; 6. Lesser trochanter; 7. Intertrochanteric crest; 8. Trochanteric fossa; 9. Intertrochanteric line; 10. Gluteal tuberosity; 11. Linea aspera; 12. Pectineal line of femur; 13. Lateral trochlear lip; 14. Medial trochlear lip; 15. Lateral epicondyle; 16. Medial epicondyle; 17. Medial femoral condyle; 18. Lateral femoral condyle; 19. Medial supracondylar line; 20. Lateral supracondylar line; 21. Articular surface for the medial gastrocnemius sesamoid bone; 22. Articular surface for the lateralsesamoid bone of gastrocnemius; 23. Vascular foramina; Black asterix—Intercondylar fossa; White arrowheads—intercondylar line; Red asterix—popliteal fossa. Dotted circle (D)—ligamentary fossa. (This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

  

Similar to the black-crested Sumatran langur monkeys and most cercopithecines in C. sabaeus, the fovea capitis has an inferior location reported to the central area of the femoral head [57]. According to [62], the anatomical position of the fovea capitis has a direct relation with the anatomical position of the femur during postural and locomotor activity, and the depth of it can be related to the size of the ligament of the femoral head.

57. Fleagle, J.G. Primate Adaptation and Evolution, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1–423. [Google Scholar] [CrossRef]

62. Jenkins, F.A.; Camazine, S.M. Hip Structure and Locomotion in Ambulatory and Cursorial Carnivores. J. Zool. 2009, 181, 351–370. [Google Scholar] [CrossRef] 

 

[vi] Chapter: «Joint Preservation Surgeries Utilizing Surgical Dislocation of the Hip».

The ligamentum teres is cut and resected to allow dislocation of the hip.

  

[vii] Villar 22 and Domb 4 classification systems were used to grade ligamentum teres tears. Depending on the extent of damage and anatomic [changes] … tearing of the ligamentum teres was treated with debridement.

  

[viii] In addition to well-established physical examination findings, radiographic evidence of frank or borderline hip dysplasia (lateral center-edge angle [LCEA] of ≤25°, sourcil angle of ≥10°), excessive acetabular version and/or femoral antetorsion, interruption of the Shenton line on the weightbearing AP pelvic radiograph, and MRI findings of labral hypertrophy and tears, articular cartilage thickening and/or inside-out chondral flaps, or a ligamentum teres tear all aided in establishing a diagnosis of symptomatic hip instability.14,25,26

14. Kraeutler MJ, Garabekyan T, Pascual-Garrido C, Mei-Dan O. Hip instability: a review of hip dysplasia and other contributing factors. Muscles Ligaments Tendons J. 2016;6(3):343-353.

25. Welton KL, Jesse MK, Kraeutler MJ, Garabekyan T, Mei-Dan O. The anteroposterior pelvic radiograph: acetabular and femoral measurements and relation to hip pathologies. J Bone Joint Surg Am. 2018;100(1):76-85.

26. Welton KL, Kraeutler MJ, Garabekyan T, Mei-Dan O. Radiographic parameters of adult hip dysplasia. Orthop J Sports Med. 2023;11(2):23259671231152868.


[ix] Methods of modeling TONFH (traumatic osteonecrosis of the femoral head) include traumatic hip dislocation, dissection of the round ligament and ligature of the femoral neck, femoral neck fracture, reduction and internal fixation after femoral neck fracture, and highly selective disruption of the anterior-superior retinacular vessels (Table 2).

FIGURE 2 | The schematic diagram of TONFH models. (a) Normal femoral head blood supply, (b) traumatic hip dislocation, (c) dissection of the round ligament and ligature of the femoral neck, (d) femoral neck fracture, (e) reduction and internal fixation after femoral neck fracture, and (f) highly selective disruption of the anterior-superior retinacular blood vessels. This figure was created with BioRender.com. (This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.)

 

3.5 Dissection of the Round Ligament and Ligature of the Femoral Neck

The key to the specific modeling approach involves femoral head dislocation by dissecting the round ligament, followed by electrocoagulation cauterization of the soft tissue surrounding the femoral neck. Alternatively, sutures can be used to ligate the surrounding vessels, effectively interrupting the extramedullary blood supply to the femoral head (Figure 2c). Based on the stage of pathological blood flow changes in ONFH (osteonecrosis of the femoral head (), this TONFH modeling method corresponds to the late stage of blood flow changes (arterial occlusion stage). Cheng et al. [26] successfully established a rat model of TONFH using this method. The findings demonstrated that the expressions of inflammatory cytokines, including IL1-β, IL33, and IL17A, were significantly upregulated. Histopathological analysis revealed significant reductions in the height-to-diameter ratio of the epiphysis (H/D) and the bone volume-to-total volume ratio (BV/TV). Deng et  al. [27] utilized a piglet model to induce TONFH. Four weeks post-modeling, deformation of the femoral head was evident. Pathological examination revealed an increased number of empty bone lacunae, while the marrow space showed infiltration of small blood vessels, fibroblasts, and adipocytes around the necrotic femoral head, accompanied by heightened osteoclast activity involved in the absorption of necrotic bone tissue. Park and Him [28] developed a piglet model of TONFH. Four weeks post-modeling, a significant increase in trabecular bone mineralization was observed in the subchondral area of the femoral head, with some specimens exhibiting crescent signs and subchondral fractures. No new bone formation on the ischemic side, while bone formation continued on the normal side, exacerbating discrepancies in trabecular structure between the two regions. This disparity in trabecular structure and mechanical load may contribute to the development of subchondral fractures.

26. J. H. Cheng, S. W. Jhan, C. C. Hsu, H. W. Chiu, and S. L. Hsu, “Extracorporeal Shockwave Therapy Modulates the Expressions of Proinflammatory Cytokines IL33 and IL17A, and Their Receptors ST2 and IL17RA, Within the Articular Cartilage in Early Avascular Necrosis of the Femoral Head in a Rat Model,” Mediators of Inflammation 2021 (2021): 9915877.

27. Z. Deng, Y. Ren, M. S. Park, and H. K. W. Kim, “Damage Associated Molecular Patterns in Necrotic Femoral Head Inhibit Osteogenesis and Promote Fibrogenesis of Mesenchymal Stem Cells,” Bone 154 (2022): 116215.

28. S. S. Park and H. K. Kim, “Subchondral Fracture After Ischemic Osteonecrosis of the Immature Femoral Head in Piglet Model,” Journal of Pediatric Orthopaedics. Part B 20, no. 4 (2011): 227–231.

 

[x] The rabbit was positioned laterally after being anesthetized with 30 mg/kg sodium pentobarbital (Sigma-Aldrich, USA) administered via an ear vein. The surgical area was disinfected and draped. A 2-cm incision was made, extending from 1 cm above the greater trochanter to the mid-femur on the left side. Blunt dissection of the tensor fascia and gluteus maximus muscle was followed by extreme flexion and internal rotation of the hip to expose the joint capsule. The femoral head was dislocated, and the Ligamentum teres was cut, severing the blood supply. Using a curved clamp, non-absorbable sutures were placed around the femoral neck, severing the vascular supply. The hip was then reduced, and the wound was sutured.

 

Due to the limitations of space, large-scale rearing of piglets is not feasible; therefore, we established a Perthes disease model using rabbits. Similar to the piglet model of Perthes disease, we cut the ligament of the femoral head and tightly ligated the base of the femoral neck with non-absorbable sutures. This method successfully created a rabbit model of Perthes disease. This model not only replicates the pathological features observed in larger animal models but also introduces a novel approach that enhances feasibility and applicability in experimental research. 



                                                                    

Author:

Arkhipov S.V. – candidate of medical sciences, surgeon, traumatologist-orthopedist. 

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, history

 

BLOG CONTENT

NEWS AND ANNOUNCEMENTS



Comments

Popular posts from this blog

LCF in 2025 (June)

  LCF in 2025 ( June )   (Quotes from articles and books published in June 2025 mentioning the ligamentum capitis femoris)   Kuhns, B. D., Kahana-Rojkind, A. H., Quesada-Jimenez, R., McCarroll, T. R., Kingham, Y. E., Strok, M. J., ... & Domb, B. G. (2025). Evaluating a semiquantitative magnetic resonance imaging-based scoring system to predict hip preservation or arthroplasty in patients with an intact preoperative joint space.  Journal of Hip Preservation Surgery , hnaf027.    [i]     academic.oup.com   Iglesias, C.  J. B., García, B. E. C., & Valarezo, J. P. P. (2025) CONTROLLED GANZ DISLOCATION.   EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal. 11(5)1410-13. DOI: 10.36713/epra2013    [ii]       researchgate.net   Guimarães, J. B., Arruda, P. H., Cerezal, L., Ratti, M. A., Cruz, I. A., Morimoto, L. R., ... & Ormond Filho, A. G. (2025). Hip Microins...

17c.PatelP

Patel P., Landscape with Jacob wrestling the angel (17th century). Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Jacob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank. ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Pierre Patel – Landscape with Jacob wrestling the angel (17th century); original in the  wikimedia.org  coll...

1883SuttonJB

  According to the author, the ligamentum capitis femoris (LCF) is a tendon of the pectineus muscle, separated from it in consequence of skeletal modifications.   THE LIGAMENTUM TERES By J. B. SUTTON, Demonstrator of Anatomy, Middlesex Hospital. (PLATE VIII.) The round ligament of the coxo-femoral articulation has long been an anatomical puzzle, consequently many diverse notions exist concerning it. Some anatomists ascribe to this hollow band of fibrous tissue very important functions in the mechanism of the hip-joint; others deprive it of all glory, simply assigning to it the menial duty of conveying blood-vessels to the head of the femur. Certain authors content themselves with a brief description of its attachments; others give elaborate and detailed accounts, extending over several pages, of its anatomy and supposed function. My object in the present communication is to show that this singular ligament is nothing more than the tendon of the pectineus muscle, sepa...

1614PlatterF

Fragment from the book Platter F. Observationum (1614). The author notes the role of the ligamentum capitis femoris (LCF) in fixing the femur in the acetabulum and the possibility of its lengthening  (synovitis) . Quote pp. 141-142 [Lat] Cruris dextri astrictio & contractio, post coxendicum dolorem. Cùm enim ligamentum illud articulum circumd ás, omnium totius corporis ligamentorum, quae articulos ambiunt, sit amplissimum; fieri potest, ut adeò cedat, ut (sicuti saepe sit) femoris caput, è suo sinu devoluatur, & in membranae illius (quae cùm erassissima sit, prae omnibus totius corporis ligamentis, nunquam vi qualicunque disrumpi potest) amplitudine seu capacitate subsistat, elongato simul & vehementer attracto, tereti illo & crasso, quod caput aliàs in suo sinu retinere solet, ligamento. Quod & ob tensionem illam nimiam, astrictum & induratum, chordae alicuius crasssissimae & firmisimae instar, quae nunquam disrumpi, nunquam ab acetabulo, cuius cartilag...

BLOG CONTENT

  T he ligament of the head of femur or ligamentum capitis femoris (LCF) is the key to a graceful gait and understanding the causes of hip joint diseases. We present promising scientific knowledge necessary for preserving health,  to create new implants and techniques  of treating degenerative  pathology and damage of the hip joint. Project objective : preserving a normal gait and quality of life, helping to study of hip joint biomechanics, developing effective treatments for its diseases and injuries. In translating to English, the author is assisted by ChatGPT (version 3.5)  and the Google Translate service .  We're sorry for any flaws in the syntax. The meaning makes up for the imperfections!     TABLES OF CONTENTS    Acetabular Canal   (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligam...

CRITICAL MASS OF CONSENSUS

Online version from 07/03/2025   Critical mass of consensus:  Opinions on the importance of ligamentum capitis femoris (XX-XXI century) Arkhipov S . V. Content [i]   Abstract [ii]   Opinions [iii]   Authors & Affiliations [iv]   References [v]   Appendices [i]   Abstract This evolving article collects views on the importance of the ligamentum capitis femoris (LCF) to the musculoskeletal system. Our collection aims to highlight the emerging fundamental shift in the current consensus in the orthopaedic and musculoskeletal research communities regarding the meaning of LCF. Here the convinced convince others. Ultimately, this once-unconventional idea will become established knowledge, enabling a transformation in clinicians’ thinking and in approaches to the prevention, diagnosis, and treatment of hip joint pathologies. [ii]   Opinions   2025 «The LT [LCF] works as a secondary static stabilizer of the hip by acting as a sling to preven...

LCF Mechanics

   Mechanics   OF THE  Ligamentum Capitis Femoris Announcement: A new scientific direction « Mechanics of the Ligamentum Capitis Femoris» has been formed.   Definition: A section of physiology that develops issues of applying the doctrine of the ligamentum capitis femoris (LCF), its movements and forces to solving medical and biological problems.   Synonyms: LCF Mechanics Mechanics of the Ligamentum Capitis Femoris Ligamentum Capitis Femoris Mechanics Ligament of the Head of Femur Mechanics L igamentum Teres Femoris Mechanics Round Ligament of Femur Mechanics   Postulates of LCF Mechanics: Strong, flexible, and non-stretchable with specific attachment points. Limits adduction, rotation, and cranial displacement of the femur. Shunts load on the femoral head and the abductor muscle group of the hip joint. Ensures rhythmicity, symmetry, and energy efficiency of walking. Performs the function to suspend the pelvis during single-leg support.   T...

1833GerdyPN

  P.N. Gerdy, in his experiment, discovered tensioning of the ligamentum capitis femoris (LCF) during thigh adduction. At the same time, it was noted for the first time that the consequence of LCF tension during hip adduction is a downward and lateral displacement of the femoral head. Normally, this mechanism provides unloading of the upper articular surfaces when supporting one leg (see 1874SavoryWS ). The translation from French was done in collaboration with ChatGPT 3.5.   Gerdy PN. Physiologie médicale, didactique et critique. T. 1. Paris: Librairie de Crochard, 1833. [fragment] Quote pp. 551-554   L'inclinaison de la cuisse en dehors, que l'on nomme son abduction, est un mouvement assez étendu, mais qui pourtant ne permet pas à la cuisse de se placer perpendiculairement à sa direction verticale. Les batteleurs peuvent se reposer sur un plan horizontal, les cuisses écartées en sens opposé. Dans l'inclinaison ...

1830HildebrandtGF_WeberEH

  The handbook records one of the early notions about the function of the ligamentum capitis femoris (LCF). This component is referred to as the "suspensory" ligament (Hångeband). The authors suggest that the LCF acts as a suspension for the thigh when the limb hangs freely without muscle tension. The ideas of E.H. Weber will be further developed by his brothers in the book " Mechanik dermenschlichen Gehwerkzeuge: eine anatomisch-physiologische Untersuchung " (1836). From our perspective, the LCF serves as a flexible suspension for the pelvis in the vertical position when supported on one leg. Hildebrandt GF, Weber EH. Handbuch der anatomie des Menschen. Band 3. Schulbuchhandlung. Braunschweig: Verlag der Schulbuchhandlung, 1830. [fragment] Quote pp. 292-293 Ligamentum teres (1). Um das Schenkelbein, wenn es herabhångt, noch fester zu halten, ist in der Höhle des Kapselbandes ein Hångeband angebracht, das man, weil es nach...

1902RilkeRM

    Works of art that mention ligamentum capitis femoris (LCF) are extremely rare. One such work is the poem «Der Schauende» ( He Who Visions, The Seer, The Man Watching, The Beholder)  b y Rainer Rilke. Below is the original text in German.   Der Schauende 1. Ich sehe den Bäumen die Stürme an, die aus laugewordenen Tagen an meine ängstlichen Fenster schlagen, und höre die Fernen Dinge sagen, die ich nicht ohne Freund ertragen, nicht ohne Schwester lieben kann. 2. Da geht der Sturm, ein Umgestalter, geht durch den Wald und durch die Zeit, und alles ist wie ohne Alter: die Landschaft, wie ein Vers im Psalter, ist Ernst und Wucht und Ewigkeit. 3. Wie ist das klein, womit wir ringen, was mit uns ringt, wie ist das groß; ließen wir, ähnlicher den Dingen, uns so vom großen Sturm bezwingen, - wir würden weit und namenlos. 4. Was wir besiegen, ist das Kleine, und der Erfolg selbst macht uns klein. Das Ewige und Ungemeine will nicht von uns gebogen sein. Das ist der Enge...