Skip to main content

LCF in 2025 (February)

 

LCF in 2025 (February): Quotes from articles and books published in February 2025 mentioning the ligamentum capitis femoris.


Jones, H., Chang, I. Y. J., Chen, D., Kalia, V., Alizai, H., Wilson, P. L., & Ellis, H. B. (2025). Prevalence of Asymptomatic Acetabular Labrum Abnormalities in the Active Pediatric Population. Journal of Pediatric Orthopaedics, 10-1097.  [i]  journals.lww.com 


Shihab, W., Luck, C., Oakley, J., & McClincy, M. (2025). Anteroinferior iliac spine osteoplasty at the time of periacetabular osteotomy helps preserve preoperative range of motion. Journal of Hip Preservation Surgery, hnaf007.  [ii]  academic.oup.com 

Meso, J. G., Choiniere, J. N., Baiano, M. A., Brusatte, S. L., Canale, J. I., Salgado, L., ... & Pittman, M. (2025). New information on Bonapartenykus (Alvarezsauridae: Theropoda) from the Allen Formation (middle Campanian-lower Maastrichtian) of Río Negro Province, Patagonia, Argentina clarifies the Patagonykinae body plan. PloS one, 20(1), e0308366.  [iii]  journals.plos.org 


Costa, L., Colaço, B., Alves-Pimenta, S., Sargo, R., Pereira, J., Pires, I., ... & Ginja, M. (2025). Hip Dysplasia Induction: Establishment of a New Surgical Model in Rabbits. The Veterinary Journal, 106308.  [iv]  sciencedirect.com 


Strečanská, A. (2024). Possibilities of solving hip joint microinstability in professional dancers. International Journal of Health, New Technologies and Social Work, 19(1), 6-8.  [v]  ceeol.com 


Zhang, H., Deng, W., Wang, S., & Yin, Y. (2025). Comparison of the efficacy of the modified SP approach and the Ganz method for surgical hip dislocation in Pipkin I fractures: an early follow-up study. BMC Musculoskeletal Disorders, 26(1), 1-10.  [vi]  bmcmusculoskeletdisord.biomedcentral.com

 

Dishanth, S., Kalaventhan, P., Kirushanthan, V., Madushanger, R., & Wijesinghe, S. (2025). The Bilateral Symmetrical Neck of Femur Fracture in a Child Following Trauma, Successfully Treated with Surgical Fixation. Jaffna Medical Journal, 36(2).  [vii]  jmj.sljol.info

 

Fukuda, H., Murata, Y., Nishimura, H., Nakashima, H., Takada, S., Nakayama, K., ... & Uchida, S. Associations Between Hip Cartilage Lesions and Morphologic Parameters of Bony Structures in a Cohort of Asian Patients with Labral Tears Measured Using a Computed Tomography-Based Software System. Journal of ISAKOS. Volume 0, Issue 0, 100400.   [viii]   jisakos.com

 

Agnolin, F. L., Chafrat, P., & Álvarez-Herrera, G. P. (2025). New specimens of Patagorhacos terrificus Agnolín and Chafrat, 2015 (Aves) shed light on the phylogeny and evolution of the Phorusrhacidae. Historical Biology, 1-13.  [ix]   tandfonline.com

 

Carnevale, L., Tagliabue, T., Rabbogliatti, V., Bona, R., & Cavallier, F. (2025). Return to Athletic Activity of a Shetland Pony Mare with Coxofemoral Luxation Treated by Femoral Head Ostectomy. Animals, 15(4), 497.  [x]  mdpi.com

 

Бортулёв П.И., Баскаева Т.В., Познович М.С., Барсуков Д.Б., Поздникин И.Ю., Рустамов А.Н. Сегментарная резекция головки бедренной кости при грубой деформации эпифиза и дисконгруэнтности суставных поверхностей у детей с болезнью Пертеса. Травматология и ортопедия. 10.02.2025. https://doi.org/10.17816/2311-2905-17645.

Bortulev, P., Baskaeva, T. V., Poznovich, M. S., Barsukov, D. B., Pozdnikin, I. Y., & Rustamov, A. (2025). Possibilities of femoral head reduction osteotomy in case of gross deformation of the epiphysis and discongruence of articular surfaces in children with Perthes disease. Traumatology and Orthopedics of Russia. 10.02.2025. https://doi.org/10.17816/2311-2905-17645[xi]   scholar.google.com

 

Rodrigues, T. C., de Morais, A. Q., de Amorim Cabrita, H. A. B., Godoy, I. R. B., & Skaf, A. (2025, February). Femoroacetabular Impingement: Preoperative Evaluation and Postoperative Imaging. In Seminars in Musculoskeletal Radiology (Vol. 29, No. 01, pp. 017-033). Thieme Medical Publishers, Inc.  [xii]  thieme-connect.com

 

Firoozabadi, R., & Collins, A. P. (2025). Novel Hip Containment Technique in Setting of Unstable Hip Joint in a Trauma Setting: A Case Report. JBJS Case Connector, 15(1), e24.  [xiii]   journals.lww.com

 

Beck, M., & Sierra, R. J. (2025) Labrum Refixation/Reconstruction/Augmentation. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 122.  [xiv]   books.google

 

Clohisy, J. C., Chen, X., & Leunig, M. (2025) Surgical Hip Dislocation Combined with Periacetabular Osteotomy. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 213.  [xv]  books.google

 

Millis, M. B., & Ganz, R. (2025) Original Technique of Surgical Hip. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 91.  [xvi]  books.google

 

Tannast, M., & Bedi, A. (2025) Computer Modeling: Collision Models. Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 43.  [xvii]  books.google

 

Chiang, C. C., Tang, H. C., Yang, C. P., Sheu, H., Chuang, C. A., & Chan, Y. S. (2025). Risk factors for insufficient hip distraction for safe central compartment access during hip arthroscopy: retrospective analysis of 677 cases. Journal of Hip Preservation Surgery, hnaf009.  [xviii]  academic.oup.com

 

Rovaris, I. B., Carvalho, A. L. D., Moraes, R. B. D., Monteiro, E. R., Ferreira, M. P., & Alievi, M. M. (2025). Minimally invasive technique for coxofemoral luxation treatment in dogs: a cadaveric study. Ciência Rural, 55(5), e20230626.  [xix]   scielo.br

 

Fournet, A. SURGICAL MANAGEMENT OF CRANIODORSAL COXOFEMORAL LUXATION IN THREE DOGS AND THREE CATS USING A NEW ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE IMPLANT. 22nd ESVOT CONGRESS I 5 th -7 th October 2023 I Venice (I). ID 55.  [xx]  researchgate.net

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7



[i] The purpose of this study was to determine the prevalence of hip abnormalities detected on 3T MRI in an active pediatric population with no hip symptoms and to compare with hip abnormalities found in children and adolescents who underwent an MRI for a hip-related condition. …

The average patient age was 14.9 years for both cohorts (range 9 to 18 y) and 48% were male. In the ASx group, incidental labral tears were found in 18%, labral/paralabral cysts 6%, cartilage lesion 0%, subchondral cyst 0%, ligamentum teres tear 0%, femoral fibrocystic change 0%, cam lesion 30%, acetabular bone edema 0%, acetabular rim fracture 0%.

 

[ii] Sub spine impingement (SSI) is an increasingly reported entity, symptomatically characterized by anterior groin pain and limitations in hip-joint range of motion (ROM) brought on by a low-lying anterior inferior iliac spine (AIIS). …

Along with limitations in ROM, it is suggested that SSI may be correlated with irreparable labral tears, as well as injury to the ligamentum teres [6].

6. Shapira   J, Yelton   MJ, Glein   RM  et al.  Intraoperative findings and clinical outcomes associated with arthroscopic management of subspine impingement: a propensity-matched, controlled study. Arthroscopy. 2021;37:1602–14.

 

[iii] Posterior to the femoral head, there is a wide, prominent and oblique groove (Fig 18), which corresponds to the passage of the ligamentum capitis femoris [62]. This groove is present in Zuolong salleei [110], although is not seen in other alvarezsaurids.

62. Baumel JJ. Handbook of Avian Anatomy: nomina anatomica avium. Publications of the Nuttall Ornithological Club. 1993.

110. Choiniere JN, Clark JM, Forster CA, Xu X. A basal coelurosaur (Dinosauria: Theropoda) from the Late Jurassic (Oxfordian) of the Shishugou Formation in Wucaiwan, People’s Republic of China. J Vertebr Paleontol. 2010;30: 1773–1796. View Article  Google Scholar

Fig 18. Right femur of MPCN-PV 738.1. A, cranial view; B, lateral view; C, caudal view; D, medial view; E, proximal view; F, distal view. Abbreviations: gt, greater trochanter; fn, femoral neck; fh, femoral head; lc, lateral condyle; mc, medial condyle; ms, muscle scar. Scale bar equal to 3 cm. https://doi.org/10.1371/journal.pone.0308366.g018 (Creative Commons Attribution (CC BY).


[iv] Seventeen 6-week-old male New Zealand white rabbits were randomly assigned to 3 groups: GI (n = 3) – control group, with six normal hips (NH); GII (n = 7) – seven left instability surgery hips (ISH) and seven right surgery sham hips (SSH); GIII (n = 7) – seven left instability surgery hips, followed by hindlimb bandage immobilization for 3 days (ISHI) and seven right hips without surgery (HWS). The instability surgery was performed by sectioning the teres ligament and the sham by accessing the capsule without its section. After 14 weeks following the induction surgery, the rabbits underwent radiographic and computed tomographic studies and histopathological characterization of the hip joint based on the severity of cartilage structure and chondrocyte pathology. In the imaging assessment, the ISHI group was the only group presenting statistically significant differences in all four parameters, consistent with HD [Hip dysplasia] development (P < 0.05).

 

[v] Anatomic arthroscopic ligamentum teres reconstruction for hip instability. 


[vi] After removing the residual muscle and soft tissue attachment, the greater trochanter was lifted proximally to expose the hip capsule anteriorly. A “Z” incision was made in the capsule to expose the femoral head fracture site. Following ligament resection, the femoral head was reduced and stabilized using 2–3 subchondral headless Herbert screws or 4 mm cannulated screws as needed. 


[vii] In addition to the medial circumflex and lateral circumflex artery, the head of the femur also acquires blood supply through the ligamentum teres which is a major blood supply in childhood (4). Blood supply from the Lateral circumflex artery and ligamentum teres begin to regress after the age of 4 until 10 years (3).

3. Dial BL, Lark RK. Pediatric proximal femur fractures. J Orthop [Internet]. 2018 Jun;15(2):529– 35. Available from: https://linkinghub.elsevier. com/retrieve/pii/S0972978X17304075

4. Palocaren T. Femoral neck fractures in children: A review. Indian J Orthop [Internet]. 2018;52(5):501. Available from: http://www.ijoonline.com/text. asp?2018/52/5/501/240505 


[viii] Future studies incorporating additional imaging techniques such as MRI or dynamic assessments could provide a more comprehensive understanding of hip joint pathologies including labral tear, cartilage damage, ligamentum teres tear, capsular condition, and impingement issues. 


[ix] … a deep, well-defined and subcircular-shaped fovea capitis.


[x] The rarity of this condition [Luxation of the coxofemoral joint] in equids is attributed to the deep acetabulum, reinforced by the fibrocartilaginous acetabular rim, robust ligamentous structures (including the round and accessory ligaments), and substantial musculature that provides strong stabilization to the coxofemoral joint [210]. 

2. Toth, F.; Adair, H.S.; Holder, T.E.C. Femoral head ostectomy to treat a donkey for coxofemoral luxation. Equine Vet. Educ. 2007, 19, 478–481. [Google Scholar] [CrossRef]

10. Bennett, D.; Campbell, J.R.; Rawlinson, J.R. Coxofemoral luxation complicated by upward fixation of the patella in the pony. Equine Vet. J. 1977, 9, 192–194. [Google Scholar] [CrossRef]


[xi] After visualization of the external rotators of the hip, slide osteotomy of the greater trochanter and its mobilization within the required visualization of the hip joint capsule with its subsequent Z-shaped dissection were performed. After intersection of the proper ligament of the femoral head, dislocation was performed with subsequent separation of the periosteal-capsular-muscular flap containing the main source of blood supply to the femoral head - the branch of a. circumflexa femoris medialis. The next stage was segmental resection of the femoral head (Fig. 1).

Figure 6. Right hip X-rays (the red dashed line marks the condition of the Shenton line): … c — 8 months after surgery, the formation of hip subluxation (deformity progression in the lateral edge of the acetabulum, the Shenton line break more than 5 mm) is observed. 


[xii] Direct magnetic resonance arthrography (MRA) at 3T is widely regarded as the diagnostic gold standard for identifying chondrolabral lesions, ligamentum teres lesions, and intra-articular loose bodies.[10] [11] 


[xiii] Abstract

Case: A 39-year-old woman who was involved in a motor vehicle collision sustained a right hip posterior wall acetabular fracture-dislocation. Subsequent dislocation was noted at the 4-week point with gross instability and heterotopic ossification. She underwent a hip containment technique using a transfemoral neck tunnel through the quadrilateral surface and FiberTape. At 1-year postoperatively, she reported improvement in mobility without evidence of repeat dislocation.

Conclusion: This technique can be used for unstable hip sockets with a small posterior wall acetabular fracture to maintain hip stability. This is the first reported technique using an open intrapelvic approach to stabilize the hip.

In less severe nontraumatic cases, microinstability at the hip may potentially be improved with ligamentum teres reconstruction 2 , 3 .  

The ligamentum teres has also been described as the secondary stabilizer of the hip joint 5 . 

 

[xiv] For short segmental defects, the ligamentum capitis femoris (ligamentum teres) can be used to reconstruct the labrum.

The ligamentum teres is cut by a pair of curved parametrium scissors as close as possible to the teardrop to obtain a graft as long as possible. 


[xv] These hips commonly have an aspheric femoral head, intra-articular abnormalities (labrum, articular cartilage, and ligamentum teres), intra-articular impingement, extra-articular impingement, and instability from secondary acetabular dysplasia.

 

[xvi] By raising the hook and simultaneous external rotation, subluxation is achieved, which facilitates the introduction of uterine scissors and allows the tensioned ligamentum teres to be cut. 

 

[xvii] Structures such as the labrum, the ligamentum capitis femoris, and the joint capsule are usually not considered although they can contribute substantially to hip ROM. 

 

[xviii] Table 1. Indications of hip arthroscopy and surgical procedures.

Round ligament tear  n  = 67 (9,4%)  Debridement and synovectomy (Procedure descriptions) 

 

[xix] This study developed a minimally invasive technique for stabilization of coxofemoral luxation, guided by radiographic images, in dog cadavers, being, to the authors’ knowledge, its first description in literature. The procedure started by defining positionings of the limb, aiming to guide the introduction of the guide pin (GP) and planning the technique. Thereafter, the GP was percutaneously introduced into the greater trochanter of the femur, until it crossed the acetabular far cortical. After its implantation, a cannulated drill (CD) was inserted, and drilled until it crossed the acetabular far cortical. The GP was removed, and a toggle pin was introduced and accommodated in the acetabular far cortical.

The toggle pin (which measured 10.0 mm in length and 2.0 mm in diameter) had a central hole through which a suture was passed (1-poliglecaprone-25, just to simulate the technique) (Figure 4B). The toggle pin and suture were inserted into the CD through an introducer and were accommodated on the medial surface of the acetabular far cortical (Figure 3I, Figure 4A and Figure 4D).

After passage and proper positioning of the toggle pin, the CD was removed and a metallic button (Figure 4A), with holes through which the two ends of the suture had been passed, was fixed on the lateral surface of the greater trochanter of the femur (Figure 5E). Radiographic images were performed to visualize the positioning of the implants and determine the end of the procedure, in P1 and P2 (Figure 5F). 

Figure 4. Photographic images of devices used in the Minimally invasive technique for coxofemoral luxation treatment in dogs: A cadaveric study. Metallic button, in which the sutures were anchored, and which was fixed to the lateral surface of the greater trochanter of the femur (A). The exit of the toggle pin from the cannulated drill (B). Metallic pin with a blunt tip (yellow arrow), used to remove possible obstructions of the cannula; cannulated drill (white arrow), used to drill and conduct the toggle pin into the acetabular far cortical; and guide pin (black arrow), used to guide the perforation of the cannulated drill (C). (This is an open-access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0) 

Figure 5. Radiographic images demonstrating the procedure of the Minimally invasive technique for coxofemoral luxation treatment in dogs: A cadaveric study. The surgical procedure was divided into six moments. Moment 5 (M5) is the implantation of the toggle pin, which represents the time interval between M4 and the end of the implantation of the toggle pin and its button (A, B, C, D, E). Moment 6 (M6) is the procedure control radiographic images and comprises the time interval between M5 and the last control image, in P1 and Positioning 2 (P2) (E, F). (This is an open-access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0) 

 

[xx] The surgical management of hip luxation consists in various hip stabilization techniques, including capsulorrhaphy, extra-articular iliofemoral suture (3) secured with anchors (4) and intra-articular replacement of the femoral head ligament with a synthetic ligament secured by toggle pins (5).

A first femoral tunnel was drilled from the distal base of the great trochanter to the fovea capitis. A second femoral tunnel was drilled perpendicularly to the first one in a more distal position. A third tunnel was drilled through the acetabulum on the round ligament footprint. The cortical button of the ligament was passed through the acetabular tunnel and securely positioned on the medial aspect of the acetabulum. The ligament was then passed in the first femoral tunnel, and the hip was reduced. Then the implant was passed through the second femoral tunnel, tensioned, and secured by an interference screw.

3. Meij B, et al: Results of extra-articular stabilisation following open reduction of coxofemoral luxation in dogs and cats. J Small Anim Pract 33:320-326, 1992.

4. Spranklin D, et al: Comparison of a Suture Anchor and a Toggle Rod for Use in Toggle Pin Fixation of Coxofemoral Luxations. J Am Anim Hosp Assoc 42:121-126, 2006.

5. Flynn M, et al: Biomechanical Evaluation of a Toggle Pin Technique for Management of Coxofemoral Luxation. Vet Surg 23:311-321, 1994. 


                                                                    

Author:

Arkhipov S.V. – candidate of medical sciences, surgeon, traumatologist-orthopedist. 

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, history

 

BLOG CONTENT

NEWS AND ANNOUNCEMENTS



Comments

Popular posts from this blog

1969DeeR

  Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Article : Dee R. Structure and function of hip joint innervation (1969). The author discusses the nervous system of the ligamentum capitis femoris (LCF) and its role in hip biomechanics. The text in Russian is available at the following link: 1969DeeR . [ii]   Original text STRUCTURE AND FUNCTION OF HIP JOINT INNERVATION Arnott Demonstration delivered at the Royal College of Surgeons of England  on 4th February 1969 by Roger Dee , M.A., F.R.C.S. Neurologcal Laboratory, Royal College of Surgeons of England, and Department of Orthopaedic Surgery, Middlesex Hospital, London   In 1885 JAMES ARNOTT, surgeon to the Middlesex Hospital and one of the founders of its Medical School, endowed a series of lectures to be given at the Royal College of Surge...

LCF in 2025 (August)

  LCF in 2025 ( August )   (Quotes from articles and books published in  August  2025 mentioning the ligamentum capitis femoris)   Castro, A., de Melo, C., & Leal, F. (2025). Complications in hip Arthroscopy: Recognizing and managing adverse events. Journal of Clinical Orthopaedics and Trauma , 103144.   [i]   journal-cot.com   Negayama, T., Nishimura, H., Murata, Y., Nakayama, K., Takada, S., Nakashima, H., ... & Uchida, S. (2025). Factors associated with treatment failure after hip arthroscopic surgery for the patient with femoroacetabular impingement secondary to Legg-Calvé-Perthes disease. Journal of ISAKOS , 100937.   [ii]   jisakos.com   Wegman, S. J., Shaikh, H., Brodell Jr, J. D., Cook, P. C., & Giordano, B. D. (2025). Femoral head osteochondral allograft transplantation with and without simultaneous periacetabular osteotomy: a case series. Journal of Hip Preservation Surgery , hnaf037.   [iii] ...

1679DiemerbroeckI

  Fragments from the book Diemerbroeck I. Anatome corporis humani (1679). The author describes the pathology variants, function, topography and attachment of the ligamentum capitis femoris (LCF). The damage to the LCF in hip dislocation, symptoms and treatment are discussed. The text is similar to a paraphrase of Hegetor's work «On Causes» and Galen of Pergamon's commentary on Hippocrates' treatise «On Joints» ( 1745CocchiA ;  2020ArkhipovSV_ProlyginaIV ). Isbrand van Diemerbroeck uses many synonyms for LCF: nervus cartilaginosus, terete, teres, rotundum ligamentum, interius ligamentum. Quote p. 593. [Lat] CAPUT XIX. De Ossibus Femoris, & Cruris. Superius procesum crassum, versus coxendicis os prominentem, eique epiphyin rotundam & amplam impositam habet, sicque globosum femoris caput, valida cervice subnixum, constituit, quod cartilagine obductum in coxendicis acetabulum reconditur, in eoque duobus validis ligamentis detinetur: uno lato, crasso, & membranoso, ...

1844CruveilhierJ

Fragments from the book Cruveilhier J. The Anatomy of the Human Body (1844). The author discusses the anatomy and role of the ligamentum capitis femoris (LCF). Quote p. 94 The head (i, figs. 49 and 50) is the most regularly spheroidal of all the eminences in the skeleton, and forms nearly two thirds of a sphere. In the middle of it we observe a rough depression (k) of variable dimensions, which gives attachment to the round ligament. Quote pp. 159-162 COXO-FEMORAL ARTICULATION (fig. 76). Preparation. Remove with care all the muscles that surround the joint, preserving the reflected tendon of the rectus femoris. The psoas and iliacus muscles, the synovial capsule of which so often communicates with the articular synovial membrane, must be removed with particular care. After the fibrous capsule has been studied upon its external surface, a circular division should be made round its middle portion, for the purpose of uncovering the deep-situated parts. This articulation is the ...

1900BetheE

  Fragments of t he book Pollux J. Onomasticum (166-76) edited by E. Bethe (1900). In Greek the author calls ligamentum capitis femoris (LCF) «ἰσχίον», and the concept of «ligament» is designated by the term «νεῦρον / ν εῦρα ».   The term «ἰσχίον»  was used by Rufus of Ephesus ( 2020ArkhipovSV_ProlyginaIV ). The fragment of the Onomasticum dealing  with the LCF was quoted by Giovanni Filippo Ingrassia ( 1603IngrassiaeIP ) . See our commentary at the link:   1900 BetheE  [Rus]. Quote  1. Βιβλίου Β. 186-187 [Grc] καιλεῖται δὲ καὶ τὸ νεῦρον τὸ  σ υνέχον τὴν κοτύλην πρὸ σ  τὸν μηρὸν ἰ σ χίον. ὁμώνυμον δ’ ἐ σ τιν αύτῷ καὶ τὸ ἄρθρον. καὶ τὸ μὲν [τῇ] κοτύλῃ [ σ υνηρμο σ μένον] ὀ σ τοῦν  σ τρογγύλον μηροῦ κεφαλὴ, μηρὸ σ  δὲ τὸ  ἁπ ὸ  το ύ το υ μὲχρ ι γονάτων  μὲρο σ , …  (original source: 1900BetheE , pp. 140-141 ) Quote 2. Βιβλίου Β. 234 [Grc] Νεῦρα  δ’  ἐστι σύνδεσμος ὀστῶν εἴκων τε καὶ τεινόμενος, ἀφ ̓ ὧν κ...

1914JonesFW_MorrisH

  We are publishing a chapter from the fifth edition of «Morris's Human Anatomy» (1914). A significant portion of it is dedicated to the ligamentum capitis femoris (LCF). The original text has been edited by Wood Jones. Particularly notable are the illustrations depicting the LCF. Some of them are improved drawings by the first author ( 1879MorrisH ).   Quote pp. 276-284 1. THE HIP-JOINT Class. — Diarthrosis. Subdivision. — Enarthrodia. The hip is the most typical example of a ball-and-socket joint in the body, the round head of the femur being received into the cup-shaped cavity of the acetabulum. Both articular surfaces are coated with cartilage, that covering the head of the femur being thicker above where it has to bear the weight of the body, and thinning out to a mere edge below; the pit for the ligamentum teres is the only part uncoated, but the cartilage is somewhat heaped up around its margin. Covering the acetabulum, the cartilage is horseshoe-shaped, a...

1927HeyGrovesE

  Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragment from the article: Groves EH. Some contribution to the reconstruction surgery of the hip (1927). The author  describes  fixation of the femoral head by creating a ligamentum capitis femoris (LCF) from the joint capsule during reduction of congenital hip dislocation. The text in Russian is available at the following link:  1927HeyGrovesEH . [ii]   Original text Quote,  pp. 5 11-513.   In the one method stability is secured by gouging out a deep acetabulum, but with a great sacrifice of the mobility of the joint; in the other free movement is retained in a loose joint, the stability of which is uncertain by constructing a new acetabular shelf. I still believe that by further improvement in the technique we shall be able...

1864MacalisterA

  Content [i]   Annotaction [ii]   Original in  English [iii]   Translated into  German [iv]   Illustrations [v]   Source  &  links [vi]   Notes [vii]   Authors & Affiliations [viii]   Keywords [i]   Annotaction Fragment of the article: Macalister A. On the anatomy of the ostrich (Struthio camelus) (1864). The author observed ligamentum capitis femoris (LCF) in an ostrich. Its strength is noted, and its shape is described. Translation into Russian is available at the link: 1864MacalisterA .  [ii]   Original in  English   Quote, p. 22 The articulations of the lower extremity present many points of mechanical importance. The first, or the hip, is an enarthrosis, surrounded by a capsule, loose, expanding inferiorly; the synovial membrane spreads over the great trochanter; a strong transverse band passes from the border of the lesser sciatic notch to the upper and posterior edge of the acetab...

IMAGINATIVE LITERATURE

  Imaginative Literature (poems and prose with mention of LCF) 1742WesleyC.  The poem «Wrestling Jacob». 1902RilkeRM .   The poem:  « Der Schauende »   ( The Man Watching ). 2025ArkhipovSV. An Artistic Etude :  The Origins of Biblical Legends from a Physician’s Perspective.                                                                                                                     BLOG CONTENT NEWS AND ANNOUNCEMENTS

17c.SpinelliGB

  Spinelli GB, painting – Jacob and the angel (17th century).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Giovan Battista Spinelli –  Jacob  and  the angel  (17th century); original in the...