Skip to main content

LCF in 2025 (February)

 

LCF in 2025 (February): Quotes from articles and books published in February 2025 mentioning the ligamentum capitis femoris.


Jones, H., Chang, I. Y. J., Chen, D., Kalia, V., Alizai, H., Wilson, P. L., & Ellis, H. B. (2025). Prevalence of Asymptomatic Acetabular Labrum Abnormalities in the Active Pediatric Population. Journal of Pediatric Orthopaedics, 10-1097.  [i]  journals.lww.com 


Shihab, W., Luck, C., Oakley, J., & McClincy, M. (2025). Anteroinferior iliac spine osteoplasty at the time of periacetabular osteotomy helps preserve preoperative range of motion. Journal of Hip Preservation Surgery, hnaf007.  [ii]  academic.oup.com 

Meso, J. G., Choiniere, J. N., Baiano, M. A., Brusatte, S. L., Canale, J. I., Salgado, L., ... & Pittman, M. (2025). New information on Bonapartenykus (Alvarezsauridae: Theropoda) from the Allen Formation (middle Campanian-lower Maastrichtian) of Río Negro Province, Patagonia, Argentina clarifies the Patagonykinae body plan. PloS one, 20(1), e0308366.  [iii]  journals.plos.org 


Costa, L., Colaço, B., Alves-Pimenta, S., Sargo, R., Pereira, J., Pires, I., ... & Ginja, M. (2025). Hip Dysplasia Induction: Establishment of a New Surgical Model in Rabbits. The Veterinary Journal, 106308.  [iv]  sciencedirect.com 


Strečanská, A. (2024). Possibilities of solving hip joint microinstability in professional dancers. International Journal of Health, New Technologies and Social Work, 19(1), 6-8.  [v]  ceeol.com 


Zhang, H., Deng, W., Wang, S., & Yin, Y. (2025). Comparison of the efficacy of the modified SP approach and the Ganz method for surgical hip dislocation in Pipkin I fractures: an early follow-up study. BMC Musculoskeletal Disorders, 26(1), 1-10.  [vi]  bmcmusculoskeletdisord.biomedcentral.com

 

Dishanth, S., Kalaventhan, P., Kirushanthan, V., Madushanger, R., & Wijesinghe, S. (2025). The Bilateral Symmetrical Neck of Femur Fracture in a Child Following Trauma, Successfully Treated with Surgical Fixation. Jaffna Medical Journal, 36(2).  [vii]  jmj.sljol.info

 

Fukuda, H., Murata, Y., Nishimura, H., Nakashima, H., Takada, S., Nakayama, K., ... & Uchida, S. Associations Between Hip Cartilage Lesions and Morphologic Parameters of Bony Structures in a Cohort of Asian Patients with Labral Tears Measured Using a Computed Tomography-Based Software System. Journal of ISAKOS. Volume 0, Issue 0, 100400.   [viii]   jisakos.com

 

Agnolin, F. L., Chafrat, P., & Álvarez-Herrera, G. P. (2025). New specimens of Patagorhacos terrificus Agnolín and Chafrat, 2015 (Aves) shed light on the phylogeny and evolution of the Phorusrhacidae. Historical Biology, 1-13.  [ix]   tandfonline.com

 

Carnevale, L., Tagliabue, T., Rabbogliatti, V., Bona, R., & Cavallier, F. (2025). Return to Athletic Activity of a Shetland Pony Mare with Coxofemoral Luxation Treated by Femoral Head Ostectomy. Animals, 15(4), 497.  [x]  mdpi.com

 

Бортулёв П.И., Баскаева Т.В., Познович М.С., Барсуков Д.Б., Поздникин И.Ю., Рустамов А.Н. Сегментарная резекция головки бедренной кости при грубой деформации эпифиза и дисконгруэнтности суставных поверхностей у детей с болезнью Пертеса. Травматология и ортопедия. 10.02.2025. https://doi.org/10.17816/2311-2905-17645.

Bortulev, P., Baskaeva, T. V., Poznovich, M. S., Barsukov, D. B., Pozdnikin, I. Y., & Rustamov, A. (2025). Possibilities of femoral head reduction osteotomy in case of gross deformation of the epiphysis and discongruence of articular surfaces in children with Perthes disease. Traumatology and Orthopedics of Russia. 10.02.2025. https://doi.org/10.17816/2311-2905-17645[xi]   scholar.google.com

 

Rodrigues, T. C., de Morais, A. Q., de Amorim Cabrita, H. A. B., Godoy, I. R. B., & Skaf, A. (2025, February). Femoroacetabular Impingement: Preoperative Evaluation and Postoperative Imaging. In Seminars in Musculoskeletal Radiology (Vol. 29, No. 01, pp. 017-033). Thieme Medical Publishers, Inc.  [xii]  thieme-connect.com

 

Firoozabadi, R., & Collins, A. P. (2025). Novel Hip Containment Technique in Setting of Unstable Hip Joint in a Trauma Setting: A Case Report. JBJS Case Connector, 15(1), e24.  [xiii]   journals.lww.com

 

Beck, M., & Sierra, R. J. (2025) Labrum Refixation/Reconstruction/Augmentation. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 122.  [xiv]   books.google

 

Clohisy, J. C., Chen, X., & Leunig, M. (2025) Surgical Hip Dislocation Combined with Periacetabular Osteotomy. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 213.  [xv]  books.google

 

Millis, M. B., & Ganz, R. (2025) Original Technique of Surgical Hip. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 91.  [xvi]  books.google

 

Tannast, M., & Bedi, A. (2025) Computer Modeling: Collision Models. Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 43.  [xvii]  books.google

 

Chiang, C. C., Tang, H. C., Yang, C. P., Sheu, H., Chuang, C. A., & Chan, Y. S. (2025). Risk factors for insufficient hip distraction for safe central compartment access during hip arthroscopy: retrospective analysis of 677 cases. Journal of Hip Preservation Surgery, hnaf009.  [xviii]  academic.oup.com

 

Rovaris, I. B., Carvalho, A. L. D., Moraes, R. B. D., Monteiro, E. R., Ferreira, M. P., & Alievi, M. M. (2025). Minimally invasive technique for coxofemoral luxation treatment in dogs: a cadaveric study. Ciência Rural, 55(5), e20230626.  [xix]   scielo.br

 

Fournet, A. SURGICAL MANAGEMENT OF CRANIODORSAL COXOFEMORAL LUXATION IN THREE DOGS AND THREE CATS USING A NEW ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE IMPLANT. 22nd ESVOT CONGRESS I 5 th -7 th October 2023 I Venice (I). ID 55.  [xx]  researchgate.net

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7



[i] The purpose of this study was to determine the prevalence of hip abnormalities detected on 3T MRI in an active pediatric population with no hip symptoms and to compare with hip abnormalities found in children and adolescents who underwent an MRI for a hip-related condition. …

The average patient age was 14.9 years for both cohorts (range 9 to 18 y) and 48% were male. In the ASx group, incidental labral tears were found in 18%, labral/paralabral cysts 6%, cartilage lesion 0%, subchondral cyst 0%, ligamentum teres tear 0%, femoral fibrocystic change 0%, cam lesion 30%, acetabular bone edema 0%, acetabular rim fracture 0%.

 

[ii] Sub spine impingement (SSI) is an increasingly reported entity, symptomatically characterized by anterior groin pain and limitations in hip-joint range of motion (ROM) brought on by a low-lying anterior inferior iliac spine (AIIS). …

Along with limitations in ROM, it is suggested that SSI may be correlated with irreparable labral tears, as well as injury to the ligamentum teres [6].

6. Shapira   J, Yelton   MJ, Glein   RM  et al.  Intraoperative findings and clinical outcomes associated with arthroscopic management of subspine impingement: a propensity-matched, controlled study. Arthroscopy. 2021;37:1602–14.

 

[iii] Posterior to the femoral head, there is a wide, prominent and oblique groove (Fig 18), which corresponds to the passage of the ligamentum capitis femoris [62]. This groove is present in Zuolong salleei [110], although is not seen in other alvarezsaurids.

62. Baumel JJ. Handbook of Avian Anatomy: nomina anatomica avium. Publications of the Nuttall Ornithological Club. 1993.

110. Choiniere JN, Clark JM, Forster CA, Xu X. A basal coelurosaur (Dinosauria: Theropoda) from the Late Jurassic (Oxfordian) of the Shishugou Formation in Wucaiwan, People’s Republic of China. J Vertebr Paleontol. 2010;30: 1773–1796. View Article  Google Scholar

Fig 18. Right femur of MPCN-PV 738.1. A, cranial view; B, lateral view; C, caudal view; D, medial view; E, proximal view; F, distal view. Abbreviations: gt, greater trochanter; fn, femoral neck; fh, femoral head; lc, lateral condyle; mc, medial condyle; ms, muscle scar. Scale bar equal to 3 cm. https://doi.org/10.1371/journal.pone.0308366.g018 (Creative Commons Attribution (CC BY).


[iv] Seventeen 6-week-old male New Zealand white rabbits were randomly assigned to 3 groups: GI (n = 3) – control group, with six normal hips (NH); GII (n = 7) – seven left instability surgery hips (ISH) and seven right surgery sham hips (SSH); GIII (n = 7) – seven left instability surgery hips, followed by hindlimb bandage immobilization for 3 days (ISHI) and seven right hips without surgery (HWS). The instability surgery was performed by sectioning the teres ligament and the sham by accessing the capsule without its section. After 14 weeks following the induction surgery, the rabbits underwent radiographic and computed tomographic studies and histopathological characterization of the hip joint based on the severity of cartilage structure and chondrocyte pathology. In the imaging assessment, the ISHI group was the only group presenting statistically significant differences in all four parameters, consistent with HD [Hip dysplasia] development (P < 0.05).

 

[v] Anatomic arthroscopic ligamentum teres reconstruction for hip instability. 


[vi] After removing the residual muscle and soft tissue attachment, the greater trochanter was lifted proximally to expose the hip capsule anteriorly. A “Z” incision was made in the capsule to expose the femoral head fracture site. Following ligament resection, the femoral head was reduced and stabilized using 2–3 subchondral headless Herbert screws or 4 mm cannulated screws as needed. 


[vii] In addition to the medial circumflex and lateral circumflex artery, the head of the femur also acquires blood supply through the ligamentum teres which is a major blood supply in childhood (4). Blood supply from the Lateral circumflex artery and ligamentum teres begin to regress after the age of 4 until 10 years (3).

3. Dial BL, Lark RK. Pediatric proximal femur fractures. J Orthop [Internet]. 2018 Jun;15(2):529– 35. Available from: https://linkinghub.elsevier. com/retrieve/pii/S0972978X17304075

4. Palocaren T. Femoral neck fractures in children: A review. Indian J Orthop [Internet]. 2018;52(5):501. Available from: http://www.ijoonline.com/text. asp?2018/52/5/501/240505 


[viii] Future studies incorporating additional imaging techniques such as MRI or dynamic assessments could provide a more comprehensive understanding of hip joint pathologies including labral tear, cartilage damage, ligamentum teres tear, capsular condition, and impingement issues. 


[ix] … a deep, well-defined and subcircular-shaped fovea capitis.


[x] The rarity of this condition [Luxation of the coxofemoral joint] in equids is attributed to the deep acetabulum, reinforced by the fibrocartilaginous acetabular rim, robust ligamentous structures (including the round and accessory ligaments), and substantial musculature that provides strong stabilization to the coxofemoral joint [210]. 

2. Toth, F.; Adair, H.S.; Holder, T.E.C. Femoral head ostectomy to treat a donkey for coxofemoral luxation. Equine Vet. Educ. 2007, 19, 478–481. [Google Scholar] [CrossRef]

10. Bennett, D.; Campbell, J.R.; Rawlinson, J.R. Coxofemoral luxation complicated by upward fixation of the patella in the pony. Equine Vet. J. 1977, 9, 192–194. [Google Scholar] [CrossRef]


[xi] After visualization of the external rotators of the hip, slide osteotomy of the greater trochanter and its mobilization within the required visualization of the hip joint capsule with its subsequent Z-shaped dissection were performed. After intersection of the proper ligament of the femoral head, dislocation was performed with subsequent separation of the periosteal-capsular-muscular flap containing the main source of blood supply to the femoral head - the branch of a. circumflexa femoris medialis. The next stage was segmental resection of the femoral head (Fig. 1).

Figure 6. Right hip X-rays (the red dashed line marks the condition of the Shenton line): … c — 8 months after surgery, the formation of hip subluxation (deformity progression in the lateral edge of the acetabulum, the Shenton line break more than 5 mm) is observed. 


[xii] Direct magnetic resonance arthrography (MRA) at 3T is widely regarded as the diagnostic gold standard for identifying chondrolabral lesions, ligamentum teres lesions, and intra-articular loose bodies.[10] [11] 


[xiii] Abstract

Case: A 39-year-old woman who was involved in a motor vehicle collision sustained a right hip posterior wall acetabular fracture-dislocation. Subsequent dislocation was noted at the 4-week point with gross instability and heterotopic ossification. She underwent a hip containment technique using a transfemoral neck tunnel through the quadrilateral surface and FiberTape. At 1-year postoperatively, she reported improvement in mobility without evidence of repeat dislocation.

Conclusion: This technique can be used for unstable hip sockets with a small posterior wall acetabular fracture to maintain hip stability. This is the first reported technique using an open intrapelvic approach to stabilize the hip.

In less severe nontraumatic cases, microinstability at the hip may potentially be improved with ligamentum teres reconstruction 2 , 3 .  

The ligamentum teres has also been described as the secondary stabilizer of the hip joint 5 . 

 

[xiv] For short segmental defects, the ligamentum capitis femoris (ligamentum teres) can be used to reconstruct the labrum.

The ligamentum teres is cut by a pair of curved parametrium scissors as close as possible to the teardrop to obtain a graft as long as possible. 


[xv] These hips commonly have an aspheric femoral head, intra-articular abnormalities (labrum, articular cartilage, and ligamentum teres), intra-articular impingement, extra-articular impingement, and instability from secondary acetabular dysplasia.

 

[xvi] By raising the hook and simultaneous external rotation, subluxation is achieved, which facilitates the introduction of uterine scissors and allows the tensioned ligamentum teres to be cut. 

 

[xvii] Structures such as the labrum, the ligamentum capitis femoris, and the joint capsule are usually not considered although they can contribute substantially to hip ROM. 

 

[xviii] Table 1. Indications of hip arthroscopy and surgical procedures.

Round ligament tear  n  = 67 (9,4%)  Debridement and synovectomy (Procedure descriptions) 

 

[xix] This study developed a minimally invasive technique for stabilization of coxofemoral luxation, guided by radiographic images, in dog cadavers, being, to the authors’ knowledge, its first description in literature. The procedure started by defining positionings of the limb, aiming to guide the introduction of the guide pin (GP) and planning the technique. Thereafter, the GP was percutaneously introduced into the greater trochanter of the femur, until it crossed the acetabular far cortical. After its implantation, a cannulated drill (CD) was inserted, and drilled until it crossed the acetabular far cortical. The GP was removed, and a toggle pin was introduced and accommodated in the acetabular far cortical.

The toggle pin (which measured 10.0 mm in length and 2.0 mm in diameter) had a central hole through which a suture was passed (1-poliglecaprone-25, just to simulate the technique) (Figure 4B). The toggle pin and suture were inserted into the CD through an introducer and were accommodated on the medial surface of the acetabular far cortical (Figure 3I, Figure 4A and Figure 4D).

After passage and proper positioning of the toggle pin, the CD was removed and a metallic button (Figure 4A), with holes through which the two ends of the suture had been passed, was fixed on the lateral surface of the greater trochanter of the femur (Figure 5E). Radiographic images were performed to visualize the positioning of the implants and determine the end of the procedure, in P1 and P2 (Figure 5F). 

Figure 4. Photographic images of devices used in the Minimally invasive technique for coxofemoral luxation treatment in dogs: A cadaveric study. Metallic button, in which the sutures were anchored, and which was fixed to the lateral surface of the greater trochanter of the femur (A). The exit of the toggle pin from the cannulated drill (B). Metallic pin with a blunt tip (yellow arrow), used to remove possible obstructions of the cannula; cannulated drill (white arrow), used to drill and conduct the toggle pin into the acetabular far cortical; and guide pin (black arrow), used to guide the perforation of the cannulated drill (C). (This is an open-access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0) 

Figure 5. Radiographic images demonstrating the procedure of the Minimally invasive technique for coxofemoral luxation treatment in dogs: A cadaveric study. The surgical procedure was divided into six moments. Moment 5 (M5) is the implantation of the toggle pin, which represents the time interval between M4 and the end of the implantation of the toggle pin and its button (A, B, C, D, E). Moment 6 (M6) is the procedure control radiographic images and comprises the time interval between M5 and the last control image, in P1 and Positioning 2 (P2) (E, F). (This is an open-access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0) 

 

[xx] The surgical management of hip luxation consists in various hip stabilization techniques, including capsulorrhaphy, extra-articular iliofemoral suture (3) secured with anchors (4) and intra-articular replacement of the femoral head ligament with a synthetic ligament secured by toggle pins (5).

A first femoral tunnel was drilled from the distal base of the great trochanter to the fovea capitis. A second femoral tunnel was drilled perpendicularly to the first one in a more distal position. A third tunnel was drilled through the acetabulum on the round ligament footprint. The cortical button of the ligament was passed through the acetabular tunnel and securely positioned on the medial aspect of the acetabulum. The ligament was then passed in the first femoral tunnel, and the hip was reduced. Then the implant was passed through the second femoral tunnel, tensioned, and secured by an interference screw.

3. Meij B, et al: Results of extra-articular stabilisation following open reduction of coxofemoral luxation in dogs and cats. J Small Anim Pract 33:320-326, 1992.

4. Spranklin D, et al: Comparison of a Suture Anchor and a Toggle Rod for Use in Toggle Pin Fixation of Coxofemoral Luxations. J Am Anim Hosp Assoc 42:121-126, 2006.

5. Flynn M, et al: Biomechanical Evaluation of a Toggle Pin Technique for Management of Coxofemoral Luxation. Vet Surg 23:311-321, 1994. 


                                                                    

Author:

Arkhipov S.V. – candidate of medical sciences, surgeon, traumatologist-orthopedist. 

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, history

 

BLOG CONTENT

NEWS AND ANNOUNCEMENTS



Comments

Popular posts from this blog

LCF in 2025 (September)

  LCF in 2025 ( September )   (Quotes from articles and books published in  September  2025 mentioning the ligamentum capitis femoris)   Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).   01 September 2025. PREPRINT (Version 1)  [i]   researchsquare.com   Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.   [ii]   link.springer.com   Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis , 37 (3), 171-177.    [iii]    pmc.ncbi.nlm.nih.gov      Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P....

0cent.4Q158.1-2

  Content [i]   Annotation [ii]   Original text [iii]   Translation [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments 1-2 of Dead Sea Scroll 4Q158.1-2, which previously contained part of Genesis 32 with a mention of ligamentum capitis femoris (LCF). We have translated the reconstructed text of M.M. Zahn (2009). The English translation is available at: 0 cent .4 Q 158.1-2 . [ii]   Original text Photocopy   Dead Sea Scroll 4Q158, fragments 1-2 (Plate 138, Frag. 4 B-358482), material – parchment, text – Hebrew, period – Herodian. A screenshot of the original from The Leon Levy dead sea scrolls Digital Library collection, © 2025 Israel Antiquities Authority  deadseascrolls.org.il   (Fair use for criticism, study and comparison; sharpening, color correction, and captions done by us.).   Transcription Dead Sea Scroll 4Q158, fragments 1-2, lines 11...

EXTERNAL LIGAMENTS & LCF

  external ligaments & LCF First experiments to study the interaction of the external ligaments and the ligamentum capitis femoris in a model: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_6.html Pathological consequences of lengthening of the ligamentum capitis femoris: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_63.html   norm: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_50.html   #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/27/2025.                                                                                                                     BLOG CONTE...

1802PalmeraniÁ

   Palmerani Á , drawing Jacob wrestling with the angel (1802 ).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Ángel  Palmerani  – Jacob Wrestling with the Angel  ( 1802); original in the  a...

1971CracraftJ

   Content [i]   Annotaction [ii]   Original in  English [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotaction F ragment s of the article: Cracraft J. The functional morphology of the hind limb of the domestic pigeon, Columba livia. (1971). The author studied the ligamentum capitis femoris (LCF) in the pigeon. Its strength is noted and its attachment areas and biomechanics are described. The LCF functions in conjunction with the posterior acetabular ligament. Translation into Russian is available at the link: 1971CracraftJ .  [ii]   Original in  English Quote, p. 182 TERES LIGAMENT The teres ligament (ter lig; fig. 2) arises from the dorsal portion of the head of the femur (fovea capitis; see Stolpe, 1932, p.165 ). A short and broad ligament, it curves ventromedially to the anteroventral edge of the inner opening of the acetabu...

1980WalkerJM

   Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Article : Walker JM. Growth characteristics of the fetal ligament of the head of femur: significance in congenital hip disease (1980). The author discusses the embryonic development and size of the ligamentum capitis femoris (LCF) in normal and dysplastic hips. The text in Russian is available at the following link: 1980WalkerJM . [ii]   Original text Growth Characteristics of the Fetal Ligament of the Head of Femur: Significance in congenital hip disease   J.M. WALKER, Ph.D.   Abstract   Measurement of the length and width of the ligament of the head of femur (ligamentum teres) in 140 normal human fetuses between 12 weeks and term provides limits for growth changes in this structure. These observations provide no morphological evid...

1910SuttonHA_DrinkerCK

  Fragments from the book Sutton HA, Drinker CK. Osteology and syndesmology (1910). The selected fragments discuss the anatomy and topography of the ligament of the femoral head (LCF). According to the authors, this structure has low strength, but Galen of Pergamon (2-3rd cent.) described it as «the strongest» ( 1829KühnCG ). [Eng] Quote 1. p. 76 . The Cotyloid Lig't., or Cartilage, surmounts the edge of the Acetabulum except where it is broken by the Notch. This ligament simply deepens the cavity. The centre of the Acetabulum, by a rough area, the Cotyloid Fossa, attaches the Ligamentum Teres. Quote 2. p. 79. Head. Slightly more than a half sphere in shape. An articular surface for the Acetabulum occupies it, except at a fossa which attaches the Ligamentum Teres. Quote 3. p. 86. Two connect the bones. They are: 1. Ligamentum Teres: — Weak. Passes between the centre of the Acetabulum and the oval fossa upon the Head of the Femur. It lies outside the synovial membrane. External link...

1541MondinoL_DryanderJ

  Fragment from the book Mondino de Luzzi, Dryander J. Anatomia Mundini (1541). An early description of the anatomy and role of the ligamentum capitis femoris (LCF) is presented. The pathogenesis of lameness and soft tissue atrophy in LCF pathology is discussed. For more details, see the commentary in  1541MondinoL_DryanderJ [Rus] .  Quote p. 62. [Lat] De anatomia cruris [&] pedis. Postea eleua musculos & chordas &, uide ossa. Et primura est os foemoris supra quod fabricatae sunt spondiles dorsi: & per consequens totum corpus in parte inferiori habet pixidem quondam, in cuius concauitate locata est extremitas rotunda canna coxae, que uocatur uertebrum. Et in medio amborum in parte anteriori est quod dam ligamentum, quod aliomodo porestuocari uertebrum: & quando hoc uel primum resilit foras: tunc niecesse ed hominem claudicare, quia crus hic elongatur & firmari non potest; & totum non bene potest supportari: & necesse eit etiam ut crus tab...

18c.Augsburg

  Painting on glass from Augsburg – Jacob wrestling with the angel (18 cent.).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Author unknown, painting on the reverse of glass from Augsburg – Jacob wrestling with the a...

1873MeyerGH

  Professor  Georg Hermann von Mayer discovered a pressure mark from the ligamentum capitis femoris (LCF) on the head of the femur. In the fragment presented to your attention, the author points out that the named depression indicates the tension of the LCF in the position of flexion and external rotation of the hip. This idea of Mayer was later repeatedly cited, see, for example, the work of Hermann Welcker  " Ueber das Hüftgelenk, nebst einigen Bemerkungenüber Gelenke überhaupt, insbesondere über das Schultergelenk " (1876). von Meyer GH. Die Statik und Mechanik des menschlichen Knochengerüstes. Edited, Leipzig: Verlag von Wilhelm Engelmann; 1873. [fragment] Quote pp. 342-344   Neben der Gelenkkapsel befindet sich in dem Hüftgelenke noch ein eigenthümlicher Bandapparat, das ligamentum teres, über dessen Bedeutung sehr verschiedene Auffassung gefunden wird. Von der einen Seite wird ihm nämlich entschieden ...