Skip to main content

LCF in 2025 (February)

 

LCF in 2025 (February): Quotes from articles and books published in February 2025 mentioning the ligamentum capitis femoris.


Jones, H., Chang, I. Y. J., Chen, D., Kalia, V., Alizai, H., Wilson, P. L., & Ellis, H. B. (2025). Prevalence of Asymptomatic Acetabular Labrum Abnormalities in the Active Pediatric Population. Journal of Pediatric Orthopaedics, 10-1097.  [i]  journals.lww.com 


Shihab, W., Luck, C., Oakley, J., & McClincy, M. (2025). Anteroinferior iliac spine osteoplasty at the time of periacetabular osteotomy helps preserve preoperative range of motion. Journal of Hip Preservation Surgery, hnaf007.  [ii]  academic.oup.com 

Meso, J. G., Choiniere, J. N., Baiano, M. A., Brusatte, S. L., Canale, J. I., Salgado, L., ... & Pittman, M. (2025). New information on Bonapartenykus (Alvarezsauridae: Theropoda) from the Allen Formation (middle Campanian-lower Maastrichtian) of Río Negro Province, Patagonia, Argentina clarifies the Patagonykinae body plan. PloS one, 20(1), e0308366.  [iii]  journals.plos.org 


Costa, L., Colaço, B., Alves-Pimenta, S., Sargo, R., Pereira, J., Pires, I., ... & Ginja, M. (2025). Hip Dysplasia Induction: Establishment of a New Surgical Model in Rabbits. The Veterinary Journal, 106308.  [iv]  sciencedirect.com 


Strečanská, A. (2024). Possibilities of solving hip joint microinstability in professional dancers. International Journal of Health, New Technologies and Social Work, 19(1), 6-8.  [v]  ceeol.com 


Zhang, H., Deng, W., Wang, S., & Yin, Y. (2025). Comparison of the efficacy of the modified SP approach and the Ganz method for surgical hip dislocation in Pipkin I fractures: an early follow-up study. BMC Musculoskeletal Disorders, 26(1), 1-10.  [vi]  bmcmusculoskeletdisord.biomedcentral.com

 

Dishanth, S., Kalaventhan, P., Kirushanthan, V., Madushanger, R., & Wijesinghe, S. (2025). The Bilateral Symmetrical Neck of Femur Fracture in a Child Following Trauma, Successfully Treated with Surgical Fixation. Jaffna Medical Journal, 36(2).  [vii]  jmj.sljol.info

 

Fukuda, H., Murata, Y., Nishimura, H., Nakashima, H., Takada, S., Nakayama, K., ... & Uchida, S. Associations Between Hip Cartilage Lesions and Morphologic Parameters of Bony Structures in a Cohort of Asian Patients with Labral Tears Measured Using a Computed Tomography-Based Software System. Journal of ISAKOS. Volume 0, Issue 0, 100400.   [viii]   jisakos.com

 

Agnolin, F. L., Chafrat, P., & Álvarez-Herrera, G. P. (2025). New specimens of Patagorhacos terrificus Agnolín and Chafrat, 2015 (Aves) shed light on the phylogeny and evolution of the Phorusrhacidae. Historical Biology, 1-13.  [ix]   tandfonline.com

 

Carnevale, L., Tagliabue, T., Rabbogliatti, V., Bona, R., & Cavallier, F. (2025). Return to Athletic Activity of a Shetland Pony Mare with Coxofemoral Luxation Treated by Femoral Head Ostectomy. Animals, 15(4), 497.  [x]  mdpi.com

 

Бортулёв П.И., Баскаева Т.В., Познович М.С., Барсуков Д.Б., Поздникин И.Ю., Рустамов А.Н. Сегментарная резекция головки бедренной кости при грубой деформации эпифиза и дисконгруэнтности суставных поверхностей у детей с болезнью Пертеса. Травматология и ортопедия. 10.02.2025. https://doi.org/10.17816/2311-2905-17645.

Bortulev, P., Baskaeva, T. V., Poznovich, M. S., Barsukov, D. B., Pozdnikin, I. Y., & Rustamov, A. (2025). Possibilities of femoral head reduction osteotomy in case of gross deformation of the epiphysis and discongruence of articular surfaces in children with Perthes disease. Traumatology and Orthopedics of Russia. 10.02.2025. https://doi.org/10.17816/2311-2905-17645[xi]   scholar.google.com

 

Rodrigues, T. C., de Morais, A. Q., de Amorim Cabrita, H. A. B., Godoy, I. R. B., & Skaf, A. (2025, February). Femoroacetabular Impingement: Preoperative Evaluation and Postoperative Imaging. In Seminars in Musculoskeletal Radiology (Vol. 29, No. 01, pp. 017-033). Thieme Medical Publishers, Inc.  [xii]  thieme-connect.com

 

Firoozabadi, R., & Collins, A. P. (2025). Novel Hip Containment Technique in Setting of Unstable Hip Joint in a Trauma Setting: A Case Report. JBJS Case Connector, 15(1), e24.  [xiii]   journals.lww.com

 

Beck, M., & Sierra, R. J. (2025) Labrum Refixation/Reconstruction/Augmentation. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 122.  [xiv]   books.google

 

Clohisy, J. C., Chen, X., & Leunig, M. (2025) Surgical Hip Dislocation Combined with Periacetabular Osteotomy. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 213.  [xv]  books.google

 

Millis, M. B., & Ganz, R. (2025) Original Technique of Surgical Hip. In: Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 91.  [xvi]  books.google

 

Tannast, M., & Bedi, A. (2025) Computer Modeling: Collision Models. Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery, 43.  [xvii]  books.google

 

Chiang, C. C., Tang, H. C., Yang, C. P., Sheu, H., Chuang, C. A., & Chan, Y. S. (2025). Risk factors for insufficient hip distraction for safe central compartment access during hip arthroscopy: retrospective analysis of 677 cases. Journal of Hip Preservation Surgery, hnaf009.  [xviii]  academic.oup.com

 

Rovaris, I. B., Carvalho, A. L. D., Moraes, R. B. D., Monteiro, E. R., Ferreira, M. P., & Alievi, M. M. (2025). Minimally invasive technique for coxofemoral luxation treatment in dogs: a cadaveric study. Ciência Rural, 55(5), e20230626.  [xix]   scielo.br

 

Fournet, A. SURGICAL MANAGEMENT OF CRANIODORSAL COXOFEMORAL LUXATION IN THREE DOGS AND THREE CATS USING A NEW ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE IMPLANT. 22nd ESVOT CONGRESS I 5 th -7 th October 2023 I Venice (I). ID 55.  [xx]  researchgate.net

                                                                    

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7



[i] The purpose of this study was to determine the prevalence of hip abnormalities detected on 3T MRI in an active pediatric population with no hip symptoms and to compare with hip abnormalities found in children and adolescents who underwent an MRI for a hip-related condition. …

The average patient age was 14.9 years for both cohorts (range 9 to 18 y) and 48% were male. In the ASx group, incidental labral tears were found in 18%, labral/paralabral cysts 6%, cartilage lesion 0%, subchondral cyst 0%, ligamentum teres tear 0%, femoral fibrocystic change 0%, cam lesion 30%, acetabular bone edema 0%, acetabular rim fracture 0%.

 

[ii] Sub spine impingement (SSI) is an increasingly reported entity, symptomatically characterized by anterior groin pain and limitations in hip-joint range of motion (ROM) brought on by a low-lying anterior inferior iliac spine (AIIS). …

Along with limitations in ROM, it is suggested that SSI may be correlated with irreparable labral tears, as well as injury to the ligamentum teres [6].

6. Shapira   J, Yelton   MJ, Glein   RM  et al.  Intraoperative findings and clinical outcomes associated with arthroscopic management of subspine impingement: a propensity-matched, controlled study. Arthroscopy. 2021;37:1602–14.

 

[iii] Posterior to the femoral head, there is a wide, prominent and oblique groove (Fig 18), which corresponds to the passage of the ligamentum capitis femoris [62]. This groove is present in Zuolong salleei [110], although is not seen in other alvarezsaurids.

62. Baumel JJ. Handbook of Avian Anatomy: nomina anatomica avium. Publications of the Nuttall Ornithological Club. 1993.

110. Choiniere JN, Clark JM, Forster CA, Xu X. A basal coelurosaur (Dinosauria: Theropoda) from the Late Jurassic (Oxfordian) of the Shishugou Formation in Wucaiwan, People’s Republic of China. J Vertebr Paleontol. 2010;30: 1773–1796. View Article  Google Scholar

Fig 18. Right femur of MPCN-PV 738.1. A, cranial view; B, lateral view; C, caudal view; D, medial view; E, proximal view; F, distal view. Abbreviations: gt, greater trochanter; fn, femoral neck; fh, femoral head; lc, lateral condyle; mc, medial condyle; ms, muscle scar. Scale bar equal to 3 cm. https://doi.org/10.1371/journal.pone.0308366.g018 (Creative Commons Attribution (CC BY).


[iv] Seventeen 6-week-old male New Zealand white rabbits were randomly assigned to 3 groups: GI (n = 3) – control group, with six normal hips (NH); GII (n = 7) – seven left instability surgery hips (ISH) and seven right surgery sham hips (SSH); GIII (n = 7) – seven left instability surgery hips, followed by hindlimb bandage immobilization for 3 days (ISHI) and seven right hips without surgery (HWS). The instability surgery was performed by sectioning the teres ligament and the sham by accessing the capsule without its section. After 14 weeks following the induction surgery, the rabbits underwent radiographic and computed tomographic studies and histopathological characterization of the hip joint based on the severity of cartilage structure and chondrocyte pathology. In the imaging assessment, the ISHI group was the only group presenting statistically significant differences in all four parameters, consistent with HD [Hip dysplasia] development (P < 0.05).

 

[v] Anatomic arthroscopic ligamentum teres reconstruction for hip instability. 


[vi] After removing the residual muscle and soft tissue attachment, the greater trochanter was lifted proximally to expose the hip capsule anteriorly. A “Z” incision was made in the capsule to expose the femoral head fracture site. Following ligament resection, the femoral head was reduced and stabilized using 2–3 subchondral headless Herbert screws or 4 mm cannulated screws as needed. 


[vii] In addition to the medial circumflex and lateral circumflex artery, the head of the femur also acquires blood supply through the ligamentum teres which is a major blood supply in childhood (4). Blood supply from the Lateral circumflex artery and ligamentum teres begin to regress after the age of 4 until 10 years (3).

3. Dial BL, Lark RK. Pediatric proximal femur fractures. J Orthop [Internet]. 2018 Jun;15(2):529– 35. Available from: https://linkinghub.elsevier. com/retrieve/pii/S0972978X17304075

4. Palocaren T. Femoral neck fractures in children: A review. Indian J Orthop [Internet]. 2018;52(5):501. Available from: http://www.ijoonline.com/text. asp?2018/52/5/501/240505 


[viii] Future studies incorporating additional imaging techniques such as MRI or dynamic assessments could provide a more comprehensive understanding of hip joint pathologies including labral tear, cartilage damage, ligamentum teres tear, capsular condition, and impingement issues. 


[ix] … a deep, well-defined and subcircular-shaped fovea capitis.


[x] The rarity of this condition [Luxation of the coxofemoral joint] in equids is attributed to the deep acetabulum, reinforced by the fibrocartilaginous acetabular rim, robust ligamentous structures (including the round and accessory ligaments), and substantial musculature that provides strong stabilization to the coxofemoral joint [210]. 

2. Toth, F.; Adair, H.S.; Holder, T.E.C. Femoral head ostectomy to treat a donkey for coxofemoral luxation. Equine Vet. Educ. 2007, 19, 478–481. [Google Scholar] [CrossRef]

10. Bennett, D.; Campbell, J.R.; Rawlinson, J.R. Coxofemoral luxation complicated by upward fixation of the patella in the pony. Equine Vet. J. 1977, 9, 192–194. [Google Scholar] [CrossRef]


[xi] After visualization of the external rotators of the hip, slide osteotomy of the greater trochanter and its mobilization within the required visualization of the hip joint capsule with its subsequent Z-shaped dissection were performed. After intersection of the proper ligament of the femoral head, dislocation was performed with subsequent separation of the periosteal-capsular-muscular flap containing the main source of blood supply to the femoral head - the branch of a. circumflexa femoris medialis. The next stage was segmental resection of the femoral head (Fig. 1).

Figure 6. Right hip X-rays (the red dashed line marks the condition of the Shenton line): … c — 8 months after surgery, the formation of hip subluxation (deformity progression in the lateral edge of the acetabulum, the Shenton line break more than 5 mm) is observed. 


[xii] Direct magnetic resonance arthrography (MRA) at 3T is widely regarded as the diagnostic gold standard for identifying chondrolabral lesions, ligamentum teres lesions, and intra-articular loose bodies.[10] [11] 


[xiii] Abstract

Case: A 39-year-old woman who was involved in a motor vehicle collision sustained a right hip posterior wall acetabular fracture-dislocation. Subsequent dislocation was noted at the 4-week point with gross instability and heterotopic ossification. She underwent a hip containment technique using a transfemoral neck tunnel through the quadrilateral surface and FiberTape. At 1-year postoperatively, she reported improvement in mobility without evidence of repeat dislocation.

Conclusion: This technique can be used for unstable hip sockets with a small posterior wall acetabular fracture to maintain hip stability. This is the first reported technique using an open intrapelvic approach to stabilize the hip.

In less severe nontraumatic cases, microinstability at the hip may potentially be improved with ligamentum teres reconstruction 2 , 3 .  

The ligamentum teres has also been described as the secondary stabilizer of the hip joint 5 . 

 

[xiv] For short segmental defects, the ligamentum capitis femoris (ligamentum teres) can be used to reconstruct the labrum.

The ligamentum teres is cut by a pair of curved parametrium scissors as close as possible to the teardrop to obtain a graft as long as possible. 


[xv] These hips commonly have an aspheric femoral head, intra-articular abnormalities (labrum, articular cartilage, and ligamentum teres), intra-articular impingement, extra-articular impingement, and instability from secondary acetabular dysplasia.

 

[xvi] By raising the hook and simultaneous external rotation, subluxation is achieved, which facilitates the introduction of uterine scissors and allows the tensioned ligamentum teres to be cut. 

 

[xvii] Structures such as the labrum, the ligamentum capitis femoris, and the joint capsule are usually not considered although they can contribute substantially to hip ROM. 

 

[xviii] Table 1. Indications of hip arthroscopy and surgical procedures.

Round ligament tear  n  = 67 (9,4%)  Debridement and synovectomy (Procedure descriptions) 

 

[xix] This study developed a minimally invasive technique for stabilization of coxofemoral luxation, guided by radiographic images, in dog cadavers, being, to the authors’ knowledge, its first description in literature. The procedure started by defining positionings of the limb, aiming to guide the introduction of the guide pin (GP) and planning the technique. Thereafter, the GP was percutaneously introduced into the greater trochanter of the femur, until it crossed the acetabular far cortical. After its implantation, a cannulated drill (CD) was inserted, and drilled until it crossed the acetabular far cortical. The GP was removed, and a toggle pin was introduced and accommodated in the acetabular far cortical.

The toggle pin (which measured 10.0 mm in length and 2.0 mm in diameter) had a central hole through which a suture was passed (1-poliglecaprone-25, just to simulate the technique) (Figure 4B). The toggle pin and suture were inserted into the CD through an introducer and were accommodated on the medial surface of the acetabular far cortical (Figure 3I, Figure 4A and Figure 4D).

After passage and proper positioning of the toggle pin, the CD was removed and a metallic button (Figure 4A), with holes through which the two ends of the suture had been passed, was fixed on the lateral surface of the greater trochanter of the femur (Figure 5E). Radiographic images were performed to visualize the positioning of the implants and determine the end of the procedure, in P1 and P2 (Figure 5F). 

Figure 4. Photographic images of devices used in the Minimally invasive technique for coxofemoral luxation treatment in dogs: A cadaveric study. Metallic button, in which the sutures were anchored, and which was fixed to the lateral surface of the greater trochanter of the femur (A). The exit of the toggle pin from the cannulated drill (B). Metallic pin with a blunt tip (yellow arrow), used to remove possible obstructions of the cannula; cannulated drill (white arrow), used to drill and conduct the toggle pin into the acetabular far cortical; and guide pin (black arrow), used to guide the perforation of the cannulated drill (C). (This is an open-access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0) 

Figure 5. Radiographic images demonstrating the procedure of the Minimally invasive technique for coxofemoral luxation treatment in dogs: A cadaveric study. The surgical procedure was divided into six moments. Moment 5 (M5) is the implantation of the toggle pin, which represents the time interval between M4 and the end of the implantation of the toggle pin and its button (A, B, C, D, E). Moment 6 (M6) is the procedure control radiographic images and comprises the time interval between M5 and the last control image, in P1 and Positioning 2 (P2) (E, F). (This is an open-access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0) 

 

[xx] The surgical management of hip luxation consists in various hip stabilization techniques, including capsulorrhaphy, extra-articular iliofemoral suture (3) secured with anchors (4) and intra-articular replacement of the femoral head ligament with a synthetic ligament secured by toggle pins (5).

A first femoral tunnel was drilled from the distal base of the great trochanter to the fovea capitis. A second femoral tunnel was drilled perpendicularly to the first one in a more distal position. A third tunnel was drilled through the acetabulum on the round ligament footprint. The cortical button of the ligament was passed through the acetabular tunnel and securely positioned on the medial aspect of the acetabulum. The ligament was then passed in the first femoral tunnel, and the hip was reduced. Then the implant was passed through the second femoral tunnel, tensioned, and secured by an interference screw.

3. Meij B, et al: Results of extra-articular stabilisation following open reduction of coxofemoral luxation in dogs and cats. J Small Anim Pract 33:320-326, 1992.

4. Spranklin D, et al: Comparison of a Suture Anchor and a Toggle Rod for Use in Toggle Pin Fixation of Coxofemoral Luxations. J Am Anim Hosp Assoc 42:121-126, 2006.

5. Flynn M, et al: Biomechanical Evaluation of a Toggle Pin Technique for Management of Coxofemoral Luxation. Vet Surg 23:311-321, 1994. 


                                                                    

Author:

Arkhipov S.V. – candidate of medical sciences, surgeon, traumatologist-orthopedist. 

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, history

 

BLOG CONTENT

NEWS AND ANNOUNCEMENTS



Comments

Popular posts from this blog

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

LCF in 2025 (November)

  LCF in 2025 ( November )   (Quotes from articles and books published in  October  2025 mentioning the ligamentum capitis femoris)   Awad, A., Rizk, A., ElAlfy, M., Hamed, M., Abdelghany, A. M., Mosbah, E., ... & Karrouf, G. (2025). Synergistic Effects of Hydroxyapatite Nanoparticles and Platelet Rich Fibrin on Femoral Head Avascular Necrosis Repair in a Rat Model.  Journal of Biomedical Materials Research Part B: Applied Biomaterials ,  113 (11), e35672.    [i]    onlinelibrary.wiley.com   Loughzail, M. R., Aguenaou, O., Fekhaoui, M. R., Mekkaoui, J., Bassir, R. A., Boufettal, M., ... & Lamrani, M. O. (2025). Posterior Fracture–Dislocation of the Femoral Head: A Case Report and Review of the Literature.  Sch J Med Case Rep ,  10 , 2483-2486.     [ii]    saspublishers.com  ,  saspublishers.com   Vertesich, K., Noebauer-Huhmann, I. M., Schreiner, M., Schneider, E., Willegger,...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

2012FrederickP_KelmanDC

   Invention (Patent): Frederick P, Belew K, Jasper L, Gatewood J, Gibson L, Masonis J, Cooper M, Kelman DC. Methods and apparatus for FAI surgeries.  US20120283840A1   (2012).   US20120283840A1 US Inventors: Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman Current Assignee: Smith and Nephew Inc Worldwide applications 2010 KR JP RU BR CA US CN EP CN WO AU 2014 US 2016 AU 2017 AU Application US13/202,612 events: 2010-02-25 Заявка подана Smith and Nephew Inc 2010-02-25 Приоритет US13/202,612 2012-11-08 Публикация US20120283840A1 2014-12-02 Заявка удовлетворена 2014-12-02 Публикация US8900320B2 Статус: Активный 2031-06-08 Измененный срок действия   Methods and apparatus for FAI surgeries Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman   Abstract A partial rim implant for an acetabulum in a pelvic bone comprise...

1920FrazerJES

  Fragments from the book Frazer JES. Anatomy of the Human Skeleton (1920). The author describes anatomy, embryology, development, and attachment of the ligamentum capitis femoris (LCF).   Fig. 104. — Outer view of the acetabular and ischio-pubic regions. A. is a region on the bone in front of the position of Quadratus femoris which is in relation with the tendon of Obturator externus and some loose fibro-fatty tissue that permits changes in place of the tendon with movement of the joint. B. is a sloping surface of bone which supports Pectineus but does not give origin to it; the surface extends out to the ilio-pectineal eminence where the fascia covering the Pectineus (pubic portion of fascia lata) reaches the bone at a. The front of the eminence is roughened by fibres belonging to the pubo-femoral group of ligaments. These are separated from the ilio-femoral set by an interval, apparent on the bone and marking the limit of the secondarily added pubic area of articular surfac...

1997McCandlissR

    Invention  ( Patent ) : McCandliss R. Coaxial ligamented hip prosthesis. US5702474A (1997) .   US2765787A United States Inventor: Robert McCandliss Current Assignee: Individual Worldwide applications 1996 US Application US08/589,644 events: 1996-01-22 Application filed by Individual 1996-01-22 Priority to US08/589,644 1997-12-30 Application granted 1997-12-30 Publication of US5702474A 2016-01-22 Anticipated expiration Status Expired - Fee Related   Coaxial ligamented hip prosthesis Robert McCandliss Abstract A hip prosthesis is disclosed herein intended to be fitted into a skeletal pelvis socket and which has a replacement socket that includes a metal semi-spherical acetabulum base with a plastic acetabulum liner for movably holding a spherical ball against the liner by a ligament rod. The rod passes through a head of a stem implanted into a femur and terminates with a ligament anchor plate fitted in the acetabulum base via an eyelet and pin connection. A ...

2025VertesichK_ChiariC

   Content [i]   Annotation [ii]   Original text (in  German) [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments from the article: Vertesich K, Noebauer-Huhmann IM, Schreiner M, Schneider E, Willegger M, Böhler C, Windhager R, Chiari C. The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study (2025). The authors discuss the diagnosis of pathology of the ligamentum capitis femoris (LCF) based on radiological & MRI data. The text in Russian is available at the following link: 2025VertesichK_ChiariC . [ii]   Original text (in   German)   The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study Klemens Vertesich, Iris-Melanie Noebauer-Huhmann, Marku...

2024MiglioriniF_MaffulliN

   Abstract and table 4 ( overview of LCF tear classification ) of the article Migliorini F et al. The ligamentum teres and its role in hip arthroscopy for femoroacetabular impingement: a systematic review.  (2024). Translation into Russian is available at the link: 2024MiglioriniF_MaffulliN . Systematic Review / Open access / Published: 20 December 2024 The ligamentum teres and its role in hip arthroscopy for femoroacetabular impingement: a systematic review Filippo Migliorini, Federico Cocconi, Tommaso Bardazzi, Virginia Masoni, Virginia Gardino, Gennaro Pipino, Nicola Maffulli  Journal of Orthopaedics and Traumatology  volume 25, Article number: 68 (2024)    Abstract Background The ligamentum teres (LT) has received attention in patients undergoing hip arthroscopy (HA) for femoroacetabular impingement (FAI). Indeed, a better understanding of the function of the LT and its implications for cli...

EMBRYOLOGY AND DEVELOPMENT

  embryology  AND  development ( embryology,  development . .. )  1841BarkowHCL  The author discusses development, anatomy and function of the LCF.  1864RambaudA_RenaultC  The authors describe the development of the hip joint in children and mention the place of attachment of the LCF . 1878Welcke rH  In the  article, the aut hor di scusses the embryonic development of the  ligamentum capitis femoris (LCF) in hum ans a nd certain animals (pinnipeds, tapirs).  1880SchusterH   The article discusses the embryonic development of the  LCF in  humans  and some animals.  1889AmantiniC  Selected excerpts from the article examine the role of the LCF vessels in the blood supply to the femoral head.  1 894KeithA  The paper discusses the development, anatomy, strength, and presence of the ligamentum LCF in various monkeys.   1 905BardeenCR The author briefly discusses the emergence of the LCF....

BIBLICAL DAMAGE

  Biblical damage (Artists and sculptors on the LCF damage described in the Bible:  painting, sculpture, icon, fresco, engraving…)     386Brescia_Casket  Bas-relief. Drawing depicting the circumstances and mechanism of the LCF injury. 6c.Vienna_Genesis   Miniature. Drawing depicting the circumstances and mechanism of the LCF injury. 10c.Cross  Bas-relief. Drawing depi cting the circumstances and mechanism of the LCF injury.  1000Jacob&Archangel  Fresco. Drawing depicting the circumstances and mechanism of the LCF injury.  1050Aelfric     Drawing depicting the circumstances and mechanism of the LCF injury.  1140St.Marie-Madeleine   Capital. Drawing depicting the circumstances and mechanism of the LCF injury.  1143 Palantine_Chapel   Mosaic . Drawing depicting the circumstances and mechanism of the LCF injury. 1213L’histoire_ancienne.   M iniature . Drawing depicting the circumstances and mecha...