Skip to main content

Acetabular Canal. Part 3.

 

Acetabular CanalPart 3

S.V. Arkhipov, Independent Researcher, Joensuu, Finland


Abstract

This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions. See also Part 1 and Part 2.

 

The Significance of the Acetabular Canal

The acetabular canal contains the main areas of attachment for the LCF (ligamentum capitis femoris). Its distal end attaches to the femoral head, while the proximal end connects to the fossa and notch of the acetabulum. The primary purpose of the acetabular canal is to ensure the normal functioning of the LCF. Normally, the LCF should not come into contact with the joint surfaces. Therefore, the length of the LCF should not exceed the diameter of the acetabular fossa, i.e., the diameter of the central section of the acetabular canal Its depth should be less than the thickness of the LCF.



Figure 1. Lateral wall of the acetabular canal and LCF; the bottom of the acetabulum is removed (from 1908GrayH). 

The diameter and depth of the acetabular fossa, and thus the acetabular canal, are critical dimensions for the LCF. A reduction in depth results in the bottom of the acetabular fossa approaching the articular surface of the femoral head, which has been observed by us and other authors in the older age group (1972ПодрушнякЕП; 2012АрхиповСВ). In this case, the LCF becomes compressed between the lateral wall of the acetabular canal—the cartilage surface of the femoral head—and the medial wall, the bottom of the acetabular fossa, covered by synovial and adipose tissue. Figuratively speaking, even in a normal state, the LCF is constantly caught "between Scylla and Charybdis." Continuing with this analogy, it can be said that the compressed LCF within the acetabular canal will inevitably be destroyed, much like the ships destroyed by the clashing rocks of the Symplegades in Greek mythology. The gradual compression of the LCF leads to its flattening and thinning due to abrasion, as well as histological transformation. As the LCF becomes fragile, it tears under what were previously normal stretching loads.


Visualization of the Acetabular Canal

Due to the deep location of the hip joint, it is impossible to palpate the entrance to the acetabular canal, let alone see it with the naked eye. The acetabular canal only exists when the femoral head and the acetabulum are in articulation. In ancient times, the contents of the acetabular canal were studied during post-mortem dislocation of the femoral head. It was first observed during the preparation of a deceased body for burial. The first post-mortem arthrotomy of the hip joint with hip disarticulation is presumed to have occurred in Morocco 15,000-12,500 years ago (2016MariottiV_CondemiS). Remains of a human aged 8,000-4,500 years with signs of hip disarticulation were discovered in southern China (2024YeZ_LiFJ). The acetabular canal was also examined during the preparation of bodies for mummification. The oldest embalmed body discovered in Chile is approximately 7,900±180 years old (1984AllisonMJ_LowensteinJM).

It seems that the first physicians to observe the acetabular canal were Herophilus of Chalcedon and Erasistratus of Ceos. These anatomists, in the 3rd-2nd century BCE, conducted hundreds of dissections in Alexandria (1831CelsusAC). The first to propose access to the acetabular canal by removing the anterior wall of the acetabulum was P.N. Gerdy (1833). The first successful penetration into the acetabular canal from the pelvic side was performed by W. Weber and E. Weber, who drilled a hole in the bottom of the acetabular fossa (1836WeberW_WeberE). The contents of the acetabular canal were first observed from the medial side by J. Struthers and G.M. Humphry. They made an opening in the bottom of the acetabular fossa (1858StruthersJ; 1858HumphryGM).


 Figure 2. Lateral wall of the acetabular canal and LCF; the bottom of the acetabulum is removed (from 1904FickR). 

Today, the study of the acetabular canal is inconceivable without the use of instrumental methods. Its visualization is available radiologically, for example, via plain radiography of the hip joint.


Figure 3. The acetabular canal (indicated by an arrow) in a radiograph; top – fragment of a standard anteroposterior X-ray of the hip joint; bottom – X-ray of the hip joint in the axial projection by Launstein (personal observation).


In radiography, the transverse ligament in the outer segment of the peripheral part of the acetabular canal is indistinguishable. As a result, this segment appears larger in cross-section on the X-ray than in reality. In children, the contents of the acetabular canal can be visualized using ultrasound.

Radiography allows visualization of the medial and lateral walls of the acetabular canal. A detailed view of its shape and dimensions can be obtained using computed tomography (CT) of the hip joint.


Figure 4. The acetabular canal (indicated by an arrow) visualized by computed tomography; top – fragment of a horizontal scan of the hip joint; bottom – fragment of a frontal scan of the hip joint (personal observation).


Three-dimensional reconstruction of CT scans of the hip joint enables visualization of the "entrance" to the acetabular canal, specifically the external opening of the acetabular notch.


Figure 5. External opening of the acetabular canal ("entrance" indicated by an arrow), 3D reconstruction of computed tomography; top – hip joint, front view; bottom – hip joint, bottom view (personal observation).


Viewed from below during X-ray tomography, the "entrance" to the acetabular canal has a pear-shaped form. It is wider at the back and narrower at the front. In cases of hip joint trauma, the configuration of the external opening leading to the acetabular canal may change.


Figure 6. Change in the configuration of the entrance to the acetabular canal (indicated by an arrow) in case of a fracture of the acetabular fossa with dislocation of the femoral head outward (3D reconstruction from computed tomography, bottom view, personal observation).


In some cases, CT of the hip joint reveals a shadow of the LCF in the acetabular canal. More detailed visualization of the contents of the acetabular canal can be achieved using magnetic resonance imaging (MRI) of the hip joint.


Figure 7. The acetabular canal on magnetic resonance imaging, the shadow of the LCF indicated by an arrow; top – fragment of a horizontal scan of the hip joint; bottom – fragment of a frontal scan of the hip joint (personal observation).


MRI, especially with contrast, allows differentiation of the contents of the acetabular canal: LCF, adipose tissue accumulation, cartilage surfaces, synovial fluid, synovial membrane folds, and the transverse ligament of the acetabulum.

As age increases, the depth of the acetabular fossa decreases and may even disappear entirely (1972ПодрушнякЕП). We observed the absence of the acetabular canal in the fourth stage of osteoarthritis. 


Figure 8. View of a hip joint affected by osteoarthritis of the fourth degree; area of the acetabular canal filled with newly formed bone tissue indicated by an arrow (fragment of a standard anteroposterior X-ray, personal observation).


The fossa and notch of the acetabulum usually disappear in protrusion coxarthrosis. Additionally, the acetabular canal may become filled with fibrous tissue, osteophytes, chondral bodies, and cartilage fragments. Newly formed bone and scar tissue, a deformed acetabular fossa, free joint bodies, as well as osteophytes from the deformed femoral head and the internal edges of the lunate surface, lead to damage of the LCF during movement (see Pathology of the Acetabular Canal). We believe this is one of the reasons for the disappearance of the LCF.


References

Allison MJ, Focacci G, Arriaza B, Standen V, Rivera M, Lowenstein JM. Chinchorro, momias de preparación complicada: métodos de momificación. Chungara: Revista de Antropología Chilena. 1984;13:155-73.

Celsus AC. On medicine, in eight books, Latin and English. Translated from L. Targa's edition, the words of the text being arranged in the order of construction. To which are prefixed, a life of the author, tables of weights and measures, with explanatory notes, etc. designed to facilitate the progress of medical students. By Alex. Lee, A.M., Surg. In two volumes. London: E. Cox, MDCCCXXXI [1831].

Gerdy PN. Physiologie médicale, didactique et critique. T. 1. Paris: Librairie de Crochard, 1833.

Gray H. Anatomy, descriptive and surgical; 17th ed. Philadelphia, New York: Lea & Febiger, 1908. 

Fick R. Handbuch der Anatomie und Mechanik der Gelenke: Erster Teil: Anatomie der Gelenke. Jena: G. Fischer, 1904. 

Humphry GM. A Treatise on the Human Skeleton including the Joints. Cambridge: MacMillan and Company, 1858.

Mariotti V, Belcastro MG, Condemi S. From corpse to bones: funerary rituals of the Taforalt Iberomaurusian population. Bulletins et Memoires de la Societe d'Anthropologie de Paris. 2016;28(1-2)60-5. 

Struthers J. Demonstration of the use of the round ligament of the hip joint. Edinburgh Med J. 1858;4(5)434-42. 

Weber W, Weber E. Mechanik der menschlichen Gehwerkzeuge: eine anatomisch-physiologische Untersuchung. Gottingen: Dietrichsche Buchhandlung, 1836.

Ye Z, Wang M, Stock JT, Li FJ. Disarticulation, evisceration and excarnation: Neolithic mortuary practices at Dingsishan, southern China. Antiquity. 2024;98(399)616-35. 

Архипов СВ. Роль связки головки бедренной кости в патогенезе коксартроза: дис. … канд. мед. наук. Москва, 2012. 

Подрушняк ЕП. Возрастные изменения суставов человека. Киев: Здоров‘я, 1972. 


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, acetabular canal, anatomy, attachment


                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7





Comments

Popular posts from this blog

CATALOG OF LITERATURE ON THE LCF

  Catalog of literature on the LCF (Books, articles, links, reference, mention …) NEOLITHIC AND BRONZE (8,000 to 2,000 years BCE)  https://roundligament.blogspot.com/2024/10/neolithic-and-bronze.html   IRON AGE (10th-1st century BCE) https://roundligament.blogspot.com/2024/10/iron-age.html   1st-10th Century https://roundligament.blogspot.com/2024/10/1st-10th-century.html   11th-15th Century https://roundligament.blogspot.com/2024/10/11th-15th-century.html   16th Century https://roundligament.blogspot.com/2024/10/16th-century.html   17th Century https://roundligament.blogspot.com/2024/10/17th-century.html   18th Century https :// roundligament . blogspot . com /2024/10/18 th - century . html   19th Century https://roundligament.blogspot.com/2024/10/19th-century.html   20th Century https://roundligament.blogspot.com/2024/10/20th-century.html   21st Century https://roundligament.blogspot.com/2024/10/21st-century.html BLOG CONTENT TH...

1833GerdyPN

  P.N. Gerdy, in his experiment, discovered tensioning of the ligamentum capitis femoris (LCF) during thigh adduction. At the same time, it was noted for the first time that the consequence of LCF tension during hip adduction is a downward and lateral displacement of the femoral head. Normally, this mechanism provides unloading of the upper articular surfaces when supporting one leg (see 1874SavoryWS ). The translation from French was done in collaboration with ChatGPT 3.5.   Gerdy PN. Physiologie médicale, didactique et critique. T. 1. Paris: Librairie de Crochard, 1833. [fragment] Quote pp. 551-554   L'inclinaison de la cuisse en dehors, que l'on nomme son abduction, est un mouvement assez étendu, mais qui pourtant ne permet pas à la cuisse de se placer perpendiculairement à sa direction verticale. Les batteleurs peuvent se reposer sur un plan horizontal, les cuisses écartées en sens opposé. Dans l'inclinaison ...

LCF in 2025 (May)

  LCF in 2025 (May): Quotes from articles and books published in May 2025 mentioning the ligamentum capitis femoris. Teytelbaum, D. E., Bijanki, V., Samuel, S. P., Silva, S., Israel, H., & van Bosse, H. J. Does Open Reduction of Arthrogrypotic Hips Cause Stiffness?. Journal of Pediatric Orthopaedics , 10-1097. DOI: 10.1097/BPO.0000000000002940  [i]   journals.lww.com   SANTORI, N., & TECCE, S. M. (2025). FUTURE DIRECTIONS IN ARTHROSCOPY FOR HIP TRAUMA. Advancements of Hip Arthroscopy in Trauma , 136-143.  [ii]   books.google   RANDELLI, F. (2025). ARTHROSCOPIC FREE-BODY REMOVAL AFTER DISLOCATION OR AFTER BULLET/BOMB. Advancements of Hip Arthroscopy in Trauma , 1-11.  [iii]   books.google   APRATO, A. (2025). ARTHROSCOPIC TECHNIQUES FOR FEMORAL HEAD FRACTURE REDUCTION AND FIXATION. Advancements of Hip Arthroscopy in Trauma , 38.  [iv]   books.google   Brinkman, J. C., & Hartigan, D. E. (2025). Indications f...

1290Egerton1066

  Miniature Jacob Wrestling with the Angel from Egerton 1066 (ca. 1270 – 1290?).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Jacob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Initial E from Egerton 1066 – Jacob Wrestling with the Angel (ca. 1270 – 1290?) original ...

ChatGPT. Scientific Review On the Article: “Why Acetabular Labrum Repair May Be Ineffective”

  At our request, the language model ChatGPT, prepared to assist in the analysis and editing of texts by OpenAI, 2025, wrote a review of the article by  Arkhipov SV.   Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint   ([Ru]  Архипов СВ .  Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе.  06.04.2025 ).  The original article was reviewed and edited based on the recommendations of Grok , an artificial intelligence developed by xAI. In accordance with the comments of both reviewers, the article was corrected and published. Below is the original text of the review by ChatGPT: Scientific Review and Critical Commentary On the article: “Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint” Author: S.V. Arkhipov, Independent Researcher, Joensuu, Finland I. Scientific...

INVITATION TO COOPERATION

  We offer cooperation in the following areas: - biomechanics of the hip joint in normal and pathological conditions; - hip joint endoprostheses with ligament analogues; - non-standard methods of arthroscopy of the hip joint; - reconstruction and prosthetics of the ligament of head of femur; - early diagnosis of coxarthrosis and pathology of the ligament of head of femur; - pathogenesis of dystrophic diseases of the hip joint; - joints with flexible elements for walking robots. Please send correspondence to: archipovlcfbooks&gmail.com With sincere respect to you, Sergey Arkhipov                                                                      . Translated from Russian in collaboration with ChatGPT (version 3.5, developed by OpenAI) and the Google Translate service. Original text: Мы п...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An Instrument of Knowledge and Innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     R                   T                   ...

1996(c)ArkhipovSV

  Hip joint prostheses ( Протез тазобедренного сустава ) Patent Application RU96110383A Inventor Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Application RU96110383/14A events 1996-05-23 Application filed by С.В. Архипов 1998-08-10 Publication of RU96110383A Claims 1. The hip joint prosthesis comprising a femoral component, are fixed in the femoral head, characterized in that the femoral component is designed as a pyramid whose base has the form of a spherical surface, and the faces contains ledges perpendicular trabecular bone, in addition to the femoral component coupled to the flexible member, which is passed through a through hole formed in the femoral component, and the ends of the flexible member are provided with fastening elements. 2. The prosthesis of claim. 1, characterized in that the fastening elements are made of a metal with shape memory. 3. The prosthesis of claim. 1, characterized in that the faces of the femoral component have...

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

ACETABULAR CANAL

   Acetabular Canal  (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  Acetabular Canal.  Part 2.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  Acetabular Canal.  Part 3.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  BLOG CONTENT THE DOCTRINE OF LCF MORPHOLOGY AND TOPOGRAPHY                                                                                                          ...