Skip to main content

1908GrayH

 

Fragments from the book Gray H. Anatomy, descriptive and surgical (1908; 17th ed.). The selected passages on the anatomy of the ligamentum capitis femoris (LCF) and illustrations. 

Quote p. 220

The Cotyloid Cavity or Acetabulum. The cotyloid cavity, or acetabulum, is a deep, cup-shaped, hemispherical depression, directed downward, outward, and forward; formed internally by the os pubis, above by the ilium, behind and below by the ischium, a little less than two-fifths being formed by the ilium, a little more than two-fifths by the ischium, and the remaining fifth by the pubic bone. It is bounded by a prominent, uneven rim, which is thick and strong above, and serves for the attachment of the cotyloid ligament, which contracts its orifice and deepens the surface for articulation. It presents below a deep notch, the cotyloid notch (incisura acetabuli), which is continuous with a circular depression, the fossa of the acetabulum (fossa acetabuli), at the bottom of the cavity: this depression is perforated by numerous apertures, lodges a mass of fat, and its margins, as well as those of the notch, serve for the attachment of the ligamentum teres. In front, above and behind the fossa acetabuli, is a concave rim of bone (facies lunata). The cotyloid notch is converted, in the natural state, into a foramen by a dense ligamentous band which passes across it. Through this foramen the nutrient vessels and nerves enter the joint. 

Fig. 162. — Right Femur. Anterior Surface. [fragment]

Quote p. 232

Fractures of the femur are divided, like those of the other long bones, into fractures of the upper end; of the shaft; and of the lower end. The fractures of the upper end may be classified into (1) fracture of the neck; (2) fracture at the junction of the neck with the great trochanter; (3) fracture of the great trochanter; and (4) separation of the epiphysis, either of the head or of the great trochanter. The first of these, fracture of the neck, is usually termed intracapsular fracture, but this is scarcely a correct designation, as owing to the attachment of the capsular ligament, the fracture may be partly within and partly without the capsule, when the fracture occurs at the lower part of the neck. It generally occurs in old people, principally women, and usually from a very slight degree of indirect violence. Probably the main cause of the fracture taking place in old people is in consequence of the degenerative changes which the bone has undergone. Merkel believes that it is mainly due to the absorption of the calcar femorale. These fractures are occasionally impacted. As a rule they unite by fibrous tissue, and frequently no union takes place, and the surfaces of the fracture become smooth and eburnated. The lack of reparative power in intracapsular fracture is due to lack of apposition of the fragments and diminution in the amount of blood sent to the smaller fragment. The head of the bone receives blood from the neck through the reflected portions of the capsule and through the Ligamentum teres. A fracture cuts off the supply by the neck and by the reflected portions of the capsule. 

Fig. 234. Right hip-joint, from in front. (Spalteholz.)

Quote p. 224

Its surface is smooth, coated with cartilage in the recent state, except at a little behind and below its centre, where is an ovoid depression (fovea capitis femoris), for the attachment for the Ligamentum teres.

Fig. 235. Right hip-joint, from behind. (The joint capsule, except for the strengthening ligaments, has been removed.) (Spalteholz.)

Quote p. 263

Fibro-cartilage is found at the point of insertion of the ligamentum teres into the head of the femur, in the intervertebral disks, in the pubic symphysis, and in the interarticular cartilages. 

Fig. 236. Right hip-joint from the medial side. (The bottom of the acetabulum has been chiselled away sufficiently to make the head of the femur visible.) (Spalteholz.)


Quote pp. 306-307

Supplemental Bands of the Capsular Ligament. In addition to the coraco-humeral ligament, the capsular ligament is strengthened by supplemental bands in the interior of the joint. One of these bands is situated on the inner side of the joint, and passes from the inner edge of the glenoid cavity to the lower part of the lesser tuberosity of the humerus. This is sometimes known as Flood's ligament, and is supposed to correspond with the ligamentum teres of the hip-joint. A second of these bands is situated at the lower part of the joint, and passes from the under edge of the glenoid cavity to the under part of the neck of the humerus, and is known as Schlemm's ligament. A third, called the gleno-humeral ligament, is situated at the upper part of the joint, and projects into its interior, so that it can be seen only when the capsule is opened. It is attached above to the apex of the glenoid cavity, close to the root of the coracoid process, and, passing downward along the inner edge of the tendon of the Biceps, is attached below to the lesser tuberosity of the humerus, where it forms the inner boundary of the upper part of the bicipital groove. It is a thin, ribbon-like band, occasionally quite free from the capsule.

Fig. 237. The right hip-joint, seen from before. (Toldt.)

Quote pp. 327-328

I. The Hip-joint (Articulatio Coxae) (Figs. 234, 235, 236, 237, 238, 239). This articulation is an enarthrodial or ball-and-socket joint, formed by the reception of the head of the femur into the cup-shaped cavity of the acetabulum. The articulating surfaces are covered with cartilage, that on the head of the femur being thicker at the centre than at the circumference, and covering the entire surface, with the exception of a depression just below its centre for the ligamentum teres; that covering the acetabulum is much thinner at the centre than at the circumference. It forms an incomplete cartilaginous ring of a horseshoe shape, being deficient below, where there is a circular depression, which is occupied in the recent state by a mass of fat covered by synovial membrane. The ligaments of the joints are the Capsular. Ilio-femoral. Transverse. Teres. Cotyloid. 

Fig. 238. Hip-joint, showing the ilio-femoral ligament. (After Bigelow.)

Quote p. 331

The Ligamentum Teres, or the Interarticular Ligament (ligamentum teres femoris) (Figs. 236, 237, and 239) is a triangular band implanted by its apex into the depression a little behind and below the centre of the head of the femur, and by its broad base into the margins of the cotyloid notch, becoming blended with the transverse ligament. It is formed of connective tissue, surrounded by a tubular sheath of synovial membrane. Sometimes only the synovial fold exists. Very rarely it is absent. The ligament is made tense when the hip is semiflexed, and the limb adducted and rotated outward; it is, on the other hand, relaxed when the limb is abducted. It has, however, but little influence as a ligament, though it may to a certain extent limit movement, and would appear to be merely a "vestigial and practically useless ligament." 1 It is probably a modification of the folds which in other joints fringe the margins of reflection of synovial membranes. 

Fig. 239. Right hip-joint. Frontal section. Posterior half, viewed from in front. (The joint surfaces have been somewhat pulled apart.) (Spalteholz.)

Quote p. 331

Synovial Membrane (Figs. 237 and 239). The synovial membrane is very extensive. Commencing at the margin of the cartilaginous surface of the head of the femur, it covers all that portion of the neck which is contained within the joint; from the neck it is reflected on the internal surface of the capsular ligament, covers both surfaces of the cotyloid ligament and the mass of fat contained in the depression at the bottom of the acetabulum, and is prolonged in the form of a tubular sheath around the ligamentum teres, as far as the head of the femur. It sometimes communicates through a hole in the capsular ligament between the inner band of the Y-shaped ligament and the pubo-femoral ligament with a bursa situated on the under surface of the Ilio-psoas muscle. 

Fig. 240. Relation of muscles to hip-joint. (Henle.)

Quote pp. 334-335

The hip-joint presents a very striking contrast to the shoulder-joint in the much more complete mechanical arrangements for its security and for the limitation of its movements. In the shoulder, as we have seen, the head of the humerus is not adapted at all in size to the glenoid cavity, and is hardly restrained in any of its ordinary movements by the capsular ligament. In the hip-joint, on the contrary, the head of the femur is closely fitted to the acetabulum for a distance extending over nearly half a sphere, and at the margin of the bony cup it is still more closely embraced by the cotyloid ligament, so that the head of the femur is held in its place by that ligament even when the fibres of the capsule have been quite divided (Humphry). The anterior portion of the capsule, described as the ilio-femoral ligament, is the strongest of all the ligaments in the body, and is put on the stretch by any attempt to extend the femur beyond a straight line with the trunk. That is to say, this ligament is the chief agent in maintaining the erect position without muscular fatigue; for a vertical line passing through the centre of gravity of the trunk falls behind the centres of rotation in the hip-joints, and therefore the pelvis tends to fall backward, but is prevented by the tension of the ilio-femoral and capsular ligaments. The security of the joint may be also provided for by the two bones being directly united through the ligamentum teres; but it is doubtful whether this so-called ligament can have much influence upon the mechanism of the joint. Flexion of the hip-joint is arrested by the soft parts of the thigh and abdomen being brought into contact when the leg is flexed on the thigh; and by the action of the hamstring muscles when the leg is extended; (1) extension, by the tension of the ilio-femoral ligament and front of the capsule; adduction, by the thighs coming into contact; adduction, with flexion by the outer band of the ilio-femoral ligament, the outer part of the capsular ligament: abduction, by the inner band of the ilio-femoral ligament and the pubo-femoral band; rotation outward, by the outer band of the ilio-femoral ligament; and rotation inward, by the ischio-capsular ligament and the hinder part of the capsule. The muscles which flex the femur on the pelvis are the Psoas, Iliacus, Rectus, Sartorius, Pectineus, Adductor longus and brevis, and the anterior fibres of the Gluteus medius and minimus. Extension is mainly performed by the Gluteus maximus, assisted by the hamstring muscles. The thigh is adducted by the Adductor magnus, longus, and brevis, the Pectineus, the Gracilis, and lower part of the Gluteus maxirnus, and abducted by the Gluteus medius and minimus and upper part of the Gluteus maximus. The muscles which rotate the thigh inward are the anterior fibres of the Gluteus medius, the Gluteus minimus, and the Tensor fascia femoris; while those which rotate it outward are the posterior fibres of the Gluteus medius, the Pyriformis, Obturator externus and internus, Gemellus superior and inferior, Quadratus femoris, Iliacus, Gluteus maximus, the three Adductors, the Pectineus, and the Sartorius.

1) The hip-joint cannot be completely flexed, in most persons, without at the same time flexing the knee, on account of the shortness of the hamstring muscles. Cleland, Jour, of Anat. and Phys., No. 1, Old Series, p. 87.

 

External links

Gray H. Anatomy, descriptive and surgical; 17th ed. Philadelphia, New York: Lea & Febiger, 1908. [hdl.handle.net]

Authors & Affiliations

Henry Gray (1825-1861) was a British anatomist and surgeon. [wikipedia.org] 

Henry Gray
Author: H. Pollock, unknown date;
original in the 
wikimedia.org collection (CC BY 4.0, no changes).

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, functions

                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

MORPHOLOGY AND TOPOGRAPHY

Comments

Popular posts from this blog

NEWS

  New publications of our resource ( section started June 04, 2024 ) January 11, 2025 Acetabular Canal.  Part 1.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions. See also  Part 2  and  Part 3 .  January 10, 2025 1877MorrisH An excerpt from an article noting that the LCF is stretched during flexion, adduction, external rotation, and is always torn during hip dislocations. January 8, 2025 1877BrookeC  Report and discussion on Henry Morris's paper Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint,  with  mentioning the role played by LCF.   January 7, 2025 Tweet of January 7, 2025   1898AshhurstJ The author discusses the function of the LCF as a supporting element of the body, its role in the development of deformity of the hip joint, reducing pressure and stress in the femoral head. January 4, 2025 2024Migliorin...

LCF in 2024 (December)

Publications about the LCF 2024  ( Dece mber)      Kneipp, M. L. A., Sousa, L. N., Cota, L. O., Malacarne, B. D., Winter, I. C., Santana, C. H., ... & Carvalho, A. M. (2024). Bilateral coxofemoral dysplasia in a Mangalarga Marchador foal. Journal of Equine Veterinary Science , 105253. [i]   sciencedirect.com   Siddiq, B. S., Gillinov, S. M., Cherian, N. J., & Martin, S. D. (2024). Arthroscopic Reconstruction of the Acetabular Labrum Using an Autograft Hip Capsule. JBJS Essential Surgical Techniques , 14 (4), e23.  [ii]   pmc.ncbi.nlm.nih.gov   Kraft, D. B., Delahay, J. N., & Murray, R. S. (2024). Pediatric Orthopedics. In  Essentials of Orthopedic Surgery  (pp. 139-185). Cham: Springer Nature Switzerland.  [iii] link.springer.com   Gebriel, M. E., Farid, M., Mostafa, A., Shaker, N., Abouelela, Y., & Noor, N. (2024). The Surgical Anatomy of Canine Coxofemoral Joint and Innovative Educational...

1917TrevesF_MackenzieC

  Fragments from the book Treves F, Keith A, Mackenzie C. Surgical Applied Anatomy, 7th ed. (1917). The author discusses the strength and significance of the ligamentum capitis femoris (LCF) and its changes in hip dislocations and dysplasia.   Quote pp. 542-543 3. THE HIP-JOINT … The manner in which the various movements at the hip are limited may be briefly expressed as follows: The limit of every natural movement is fixed by the extensibility of the muscles which surround a joint. That is readily seen at the hip-joint, for when the knee is extended, and the hamstring muscles thus tightened, flexion at the hip is limited long before the ligaments become tense. Ligaments only come into play when the muscular defence of the joint breaks down. Flexion, when the knee is bent, is limited by the contact of the soft parts of the groin. Extension, by the ilio-psoas, rectus femoris, and the ilio-femoral or Y -ligament. Abduction, by the adductor mass of muscles and the pubo-capsular l...

1857RichetA

  Fragments of the book Richet A. Traité pratique d' Anatomie medico-chirurgicale (1857) are devoted to the anatomy of the ligamentum capitis femoris (LCF). The author believes that the vessels passing through the LCF are sufficient to supply blood to the femoral head. The text is prepared for machine translation using a service built into the blog from Google or your web browser. In some cases, we have added links to quotations about LCF available on our resource, as well as to publications posted on the Internet.   Quote pp. 922-923 Articulation coxo-femorale. Cette articulation, qui appartient à la classe des énarthroses dont elle représente le type, a été l'objet de travaux importants de la part des physiologistes et des chirurgiens, et c'est aux frères Weber et à M. Malgaigne, plutôt qu'aux anatomistes purs, qu'on doit d'avoir mis en lumière un grand nombre des faits qui vont suivre et qui éclairent des questions pathologiques avant eux restées insol...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An instrument of knowledge and innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     r                   T                   ...

LCF in 2024 (November)

Publications about the LCF 2024  (November) .   Mohammed, C., Kong, R., Kuruba, V., Rai, V., & Munazzam, S. W. (2024). Outcomes and complications of hip arthroscopy for femoroacetabular impingement syndrome: A narrative review. Journal of Clinical Orthopaedics and Trauma , 102797. [i]   journal-cot.com   Shah, M. Q. A., Kiani, R. B., Ahmad, A., Malik, H. A., Rehman, J. U., & Anwar, Z. (2024). Children with Developmental Dysplasia of Hip-Our Experience of Outcome at a Tertiary Care Centre. Pakistan Armed Forces Medical Journal , 74 (5 ), 1236.   [ii]    scholar.google.com   Graf, R. Sonography of the Infant’s Hip: Principles, implementation and therapeutic consequences . Springer Nature. 2024.   [iii]    books.google   Sáenz, J. F. C., Carrera, E. T., Gutiérrez, R. A., & De La Ossa, L. (2024). Capsular Traction-Assisted Hip Arthroscopy: An Alternative to T-Capsulotomy for Osteochondroplasty. Arthros...

COPYRIGHT

  If not stated otherwise, all content on this blog, including text, graphics, logos, button icons, images, photographs, tables, diagrams, charts, videos, is the property of the resource administration, and is protected by copyright laws. The compilation of blog content is also the exclusive property of its administration and is protected by relevant legislation. Unless expressly specified and written permission is granted by the blog administration, any use of its materials for commercial purposes or posting on other platforms is prohibited. If you believe that the text, images, or videos published in the blog violate your copyrights, we kindly ask you to send us a notification requesting the removal of the material, accompanied by a reasonable explanation. Please submit a notice of copyright infringement that you have identified in writing to the following email address: archipovlcfbooks&gmail.com If you believe that the information posted on the blog violates the rig...

1753TarinP

  Fragments from the book Tarin P. Ostéo-graphie (1753). The author notes the localization of ligamentum capitis femoris (LCF) and uses synonyms: ligament rond, ligamentum teres capitis femoris. The text is prepared for machine translation using a service built into the blog from Google or your web browser. Quote p. 24 Les Ligamens de l'extrémité inférieure sont, 1°. la Membrane capsulaire, &c. de la cavité cotyloïde, le Ligament rond, l'Appareil ligamenteux propre à cette cavité; le Ligament transveríal interne de son bord, le transversal externe, les deux Ligamens glanduleux; … Quote p. 54. Illæ tres offeæ portiones simul unitæ Cavitatem cotyloïdeam q.t. a. constituunt, in qua occurrit Foveols h. glandulas synoviales articulationis excipiens, cuique sesc inserit ligamentum teres capitis femoris, &c. Vid. t. u. v. TAB. I. II. III. External links Tarin P. Ostéo-graphie, ou Description des os de l'adulte, du foetus, &c. Precedée d'une introduction a l'etu...

1877BrookeC

  Report by Brooke C. and discussion of the article Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint. By Henry Morris. M.A., M.B. (1877). In the discussion, Dr. Barwell remarked that: «He agreed with Mr. Morris in regarding the ligamentum teres as of little importance in the prevention of dislocation; it probably did little more than protect the vessels passing to the head of the bone. He saw a case some years ago, in which there was congenital absence of the ligamentum teres; but he had no reason for believing that the man was more liable to dislocation of the femur than other persons.» The author of the article, Henry Morris, suggested that Malgaigne «... did not attach much importance to the ligamentum teres; and believed that it had no power to hold the bone in its place.».   ROYAL MEDICAL AND CHIRURGICAL SOCIETY. TUESDAY, FEBRUARY I3TH, 1877. CHARLES BROOKE, F.R.C.S., F.R.S., Vice-President, in the Chair. D...

398-405Jerome of Stridon

  Fragments of the Book of Genesis translated by Jerome of Stridon (398-405). The Latin text contains mentioned to ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 398-405Jerome of Stridon [Rus]. Quote [Lat] Genesis 32:25,32 25. Qui cùm videret quòd eum sperare non posset, tetigit neruum femoris eius, & statim emarcuit. (original source: 1572 MontanoBA , p. 110) 32. Quá ob causam non comedunt neruú filij Israel, qui emarcuit in femore Iacob, vsq; in præsentem diem, eo quòd tetigerit neruú femoris eius, & obstupuerit. (original source: 1572 MontanoBA , p. 112) Translation [Eng] Genesis 32:25,32 25. But when he saw that he could not prevail against him, he touched the sinew of his thigh, and immediately it withered. (original source: 1572 MontanoBA , p. 110; our translation) 32. For this reason, the children of Israel do not eat the sinew that withered in Jacob's thigh to this day, because he touched the sinew of his thigh and dam...