Skip to main content

1908GrayH

 

Fragments from the book Gray H. Anatomy, descriptive and surgical (1908; 17th ed.). The selected passages on the anatomy of the ligamentum capitis femoris (LCF) and illustrations. 

Quote p. 220

The Cotyloid Cavity or Acetabulum. The cotyloid cavity, or acetabulum, is a deep, cup-shaped, hemispherical depression, directed downward, outward, and forward; formed internally by the os pubis, above by the ilium, behind and below by the ischium, a little less than two-fifths being formed by the ilium, a little more than two-fifths by the ischium, and the remaining fifth by the pubic bone. It is bounded by a prominent, uneven rim, which is thick and strong above, and serves for the attachment of the cotyloid ligament, which contracts its orifice and deepens the surface for articulation. It presents below a deep notch, the cotyloid notch (incisura acetabuli), which is continuous with a circular depression, the fossa of the acetabulum (fossa acetabuli), at the bottom of the cavity: this depression is perforated by numerous apertures, lodges a mass of fat, and its margins, as well as those of the notch, serve for the attachment of the ligamentum teres. In front, above and behind the fossa acetabuli, is a concave rim of bone (facies lunata). The cotyloid notch is converted, in the natural state, into a foramen by a dense ligamentous band which passes across it. Through this foramen the nutrient vessels and nerves enter the joint. 

Fig. 162. — Right Femur. Anterior Surface. [fragment]

Quote p. 232

Fractures of the femur are divided, like those of the other long bones, into fractures of the upper end; of the shaft; and of the lower end. The fractures of the upper end may be classified into (1) fracture of the neck; (2) fracture at the junction of the neck with the great trochanter; (3) fracture of the great trochanter; and (4) separation of the epiphysis, either of the head or of the great trochanter. The first of these, fracture of the neck, is usually termed intracapsular fracture, but this is scarcely a correct designation, as owing to the attachment of the capsular ligament, the fracture may be partly within and partly without the capsule, when the fracture occurs at the lower part of the neck. It generally occurs in old people, principally women, and usually from a very slight degree of indirect violence. Probably the main cause of the fracture taking place in old people is in consequence of the degenerative changes which the bone has undergone. Merkel believes that it is mainly due to the absorption of the calcar femorale. These fractures are occasionally impacted. As a rule they unite by fibrous tissue, and frequently no union takes place, and the surfaces of the fracture become smooth and eburnated. The lack of reparative power in intracapsular fracture is due to lack of apposition of the fragments and diminution in the amount of blood sent to the smaller fragment. The head of the bone receives blood from the neck through the reflected portions of the capsule and through the Ligamentum teres. A fracture cuts off the supply by the neck and by the reflected portions of the capsule. 

Fig. 234. Right hip-joint, from in front. (Spalteholz.)

Quote p. 224

Its surface is smooth, coated with cartilage in the recent state, except at a little behind and below its centre, where is an ovoid depression (fovea capitis femoris), for the attachment for the Ligamentum teres.

Fig. 235. Right hip-joint, from behind. (The joint capsule, except for the strengthening ligaments, has been removed.) (Spalteholz.)

Quote p. 263

Fibro-cartilage is found at the point of insertion of the ligamentum teres into the head of the femur, in the intervertebral disks, in the pubic symphysis, and in the interarticular cartilages. 

Fig. 236. Right hip-joint from the medial side. (The bottom of the acetabulum has been chiselled away sufficiently to make the head of the femur visible.) (Spalteholz.)


Quote pp. 306-307

Supplemental Bands of the Capsular Ligament. In addition to the coraco-humeral ligament, the capsular ligament is strengthened by supplemental bands in the interior of the joint. One of these bands is situated on the inner side of the joint, and passes from the inner edge of the glenoid cavity to the lower part of the lesser tuberosity of the humerus. This is sometimes known as Flood's ligament, and is supposed to correspond with the ligamentum teres of the hip-joint. A second of these bands is situated at the lower part of the joint, and passes from the under edge of the glenoid cavity to the under part of the neck of the humerus, and is known as Schlemm's ligament. A third, called the gleno-humeral ligament, is situated at the upper part of the joint, and projects into its interior, so that it can be seen only when the capsule is opened. It is attached above to the apex of the glenoid cavity, close to the root of the coracoid process, and, passing downward along the inner edge of the tendon of the Biceps, is attached below to the lesser tuberosity of the humerus, where it forms the inner boundary of the upper part of the bicipital groove. It is a thin, ribbon-like band, occasionally quite free from the capsule.

Fig. 237. The right hip-joint, seen from before. (Toldt.)

Quote pp. 327-328

I. The Hip-joint (Articulatio Coxae) (Figs. 234, 235, 236, 237, 238, 239). This articulation is an enarthrodial or ball-and-socket joint, formed by the reception of the head of the femur into the cup-shaped cavity of the acetabulum. The articulating surfaces are covered with cartilage, that on the head of the femur being thicker at the centre than at the circumference, and covering the entire surface, with the exception of a depression just below its centre for the ligamentum teres; that covering the acetabulum is much thinner at the centre than at the circumference. It forms an incomplete cartilaginous ring of a horseshoe shape, being deficient below, where there is a circular depression, which is occupied in the recent state by a mass of fat covered by synovial membrane. The ligaments of the joints are the Capsular. Ilio-femoral. Transverse. Teres. Cotyloid. 

Fig. 238. Hip-joint, showing the ilio-femoral ligament. (After Bigelow.)

Quote p. 331

The Ligamentum Teres, or the Interarticular Ligament (ligamentum teres femoris) (Figs. 236, 237, and 239) is a triangular band implanted by its apex into the depression a little behind and below the centre of the head of the femur, and by its broad base into the margins of the cotyloid notch, becoming blended with the transverse ligament. It is formed of connective tissue, surrounded by a tubular sheath of synovial membrane. Sometimes only the synovial fold exists. Very rarely it is absent. The ligament is made tense when the hip is semiflexed, and the limb adducted and rotated outward; it is, on the other hand, relaxed when the limb is abducted. It has, however, but little influence as a ligament, though it may to a certain extent limit movement, and would appear to be merely a "vestigial and practically useless ligament." 1 It is probably a modification of the folds which in other joints fringe the margins of reflection of synovial membranes. 

Fig. 239. Right hip-joint. Frontal section. Posterior half, viewed from in front. (The joint surfaces have been somewhat pulled apart.) (Spalteholz.)

Quote p. 331

Synovial Membrane (Figs. 237 and 239). The synovial membrane is very extensive. Commencing at the margin of the cartilaginous surface of the head of the femur, it covers all that portion of the neck which is contained within the joint; from the neck it is reflected on the internal surface of the capsular ligament, covers both surfaces of the cotyloid ligament and the mass of fat contained in the depression at the bottom of the acetabulum, and is prolonged in the form of a tubular sheath around the ligamentum teres, as far as the head of the femur. It sometimes communicates through a hole in the capsular ligament between the inner band of the Y-shaped ligament and the pubo-femoral ligament with a bursa situated on the under surface of the Ilio-psoas muscle. 

Fig. 240. Relation of muscles to hip-joint. (Henle.)

Quote pp. 334-335

The hip-joint presents a very striking contrast to the shoulder-joint in the much more complete mechanical arrangements for its security and for the limitation of its movements. In the shoulder, as we have seen, the head of the humerus is not adapted at all in size to the glenoid cavity, and is hardly restrained in any of its ordinary movements by the capsular ligament. In the hip-joint, on the contrary, the head of the femur is closely fitted to the acetabulum for a distance extending over nearly half a sphere, and at the margin of the bony cup it is still more closely embraced by the cotyloid ligament, so that the head of the femur is held in its place by that ligament even when the fibres of the capsule have been quite divided (Humphry). The anterior portion of the capsule, described as the ilio-femoral ligament, is the strongest of all the ligaments in the body, and is put on the stretch by any attempt to extend the femur beyond a straight line with the trunk. That is to say, this ligament is the chief agent in maintaining the erect position without muscular fatigue; for a vertical line passing through the centre of gravity of the trunk falls behind the centres of rotation in the hip-joints, and therefore the pelvis tends to fall backward, but is prevented by the tension of the ilio-femoral and capsular ligaments. The security of the joint may be also provided for by the two bones being directly united through the ligamentum teres; but it is doubtful whether this so-called ligament can have much influence upon the mechanism of the joint. Flexion of the hip-joint is arrested by the soft parts of the thigh and abdomen being brought into contact when the leg is flexed on the thigh; and by the action of the hamstring muscles when the leg is extended; (1) extension, by the tension of the ilio-femoral ligament and front of the capsule; adduction, by the thighs coming into contact; adduction, with flexion by the outer band of the ilio-femoral ligament, the outer part of the capsular ligament: abduction, by the inner band of the ilio-femoral ligament and the pubo-femoral band; rotation outward, by the outer band of the ilio-femoral ligament; and rotation inward, by the ischio-capsular ligament and the hinder part of the capsule. The muscles which flex the femur on the pelvis are the Psoas, Iliacus, Rectus, Sartorius, Pectineus, Adductor longus and brevis, and the anterior fibres of the Gluteus medius and minimus. Extension is mainly performed by the Gluteus maximus, assisted by the hamstring muscles. The thigh is adducted by the Adductor magnus, longus, and brevis, the Pectineus, the Gracilis, and lower part of the Gluteus maxirnus, and abducted by the Gluteus medius and minimus and upper part of the Gluteus maximus. The muscles which rotate the thigh inward are the anterior fibres of the Gluteus medius, the Gluteus minimus, and the Tensor fascia femoris; while those which rotate it outward are the posterior fibres of the Gluteus medius, the Pyriformis, Obturator externus and internus, Gemellus superior and inferior, Quadratus femoris, Iliacus, Gluteus maximus, the three Adductors, the Pectineus, and the Sartorius.

1) The hip-joint cannot be completely flexed, in most persons, without at the same time flexing the knee, on account of the shortness of the hamstring muscles. Cleland, Jour, of Anat. and Phys., No. 1, Old Series, p. 87.

 

External links

Gray H. Anatomy, descriptive and surgical; 17th ed. Philadelphia, New York: Lea & Febiger, 1908. [hdl.handle.net]

Authors & Affiliations

Henry Gray (1825-1861) was a British anatomist and surgeon. [wikipedia.org] 

Henry Gray
Author: H. Pollock, unknown date;
original in the 
wikimedia.org collection (CC BY 4.0, no changes).

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, functions

                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

MORPHOLOGY AND TOPOGRAPHY

Comments

Popular posts from this blog

1836-1840PartridgeR

  «Prof. Partridge in his lectures on anatomy at King's College was accustomed to compare the Ligamentum Teres, in its function, to the leathern straps by which the body of a carriage is suspended on springs » ( 1874SavoryWS ). Perhaps Nikolai Pirogov listened to these lectures ( 1859PirogoffN ).   The analogy that Richard Partridge used could have arisen after reading the monograph Bell J. The Principles of Surgery (1801) . In it, the author depicted a cart and a pelvis resting on the head of one and two femurs. However, there is no mention of ligamentum capitis femoris (LCF) in the chart descriptions. References Savory WS. On the use of the ligamentum teres of the hip joint. J Anat Physiol. 1874;8(2)291-6.    [ ncbi.nlm.nih.gov  ,    archive.org ] Pirogoff N. Anatome topographica sectionibus per corpus humanum congelatum triplici directione ductus illustrate. Petropoli: Typis Jacobi Trey, 1859.   [ books.google  ,   archive.org ] ...

LCF in 2025 (March)

  LCF in 2025 ( March ):  Quotes from articles and books published in March 2025 mentioning the ligamentum capitis femoris.   Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report. JBJS Case Connector ,  15 (1), e25.   [i]     journals.lww.com   Arkhipov, S. V. (2025). Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February 26, 2025.  [ii]   researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery (pp. 29-42). Cham: Springer Nature Switzerland.  [iii]    link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Capitis of the Femoral Head an...

2000-1600bcBM29663

  Fragment of the text of clay tablet BM 29663 (Mesopotamia, 2000-1600 BC). In the list of body parts of a sheep, the author indicates ligamentum capitis femoris (LCF). See our commentary at the link: 2000-1600bcBM29663 [Rus]. Quote [Akk] Clay tablet BM 29663 (original source: photo - British Museum  britishmuseum.org , text - 2018CohenY , p. 134). Translation [Eng] List of Sheep Body Parts ( с lay tablet BM 29663, obverse) 10. ni-im-šu → nimšu, “sciatic nerve”, “sinew” . ( original source: 2018CohenY , p. 135). ( original source: British Museum  britishmuseum.org ,  CC BY-NC-SA 4.0)  External links Clay tablet; museum number 29663; registration number 1898,1115.49. Middle East, Old Babylonian period (2000-1600 BC). [ britishmuseum.org  ,  cdli.mpiwg-berlin.mpg.de ] Sigrist M, Zadok R, Walker C. Catalogue of the Babylonian tablets in the British Museum. Catalogue of the Babylonian tablets in the British Museum. London: British Museum Press, 2006. ...

2025ArkhipovSV. Human Children

  The monograph  Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. [In Russian].  The monograph dates the writing of the Book of Genesis and the events depicted in it, as well as refutes the authorship of Moses. I offer mutually beneficial cooperation (50/50) in literary translation into English or native language. Proofreading of machine translation and cooperation in editing are expected.  Requirements for co-author: 1. Native speaker 2. Experience as a writer. E-mail: archipovsv(&)gmail.com Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition...

A FORCE THAT HELPS ROTATE THE PELVIS

   A force that helps rotate the pelvis when walking. Modeling the key movement of the ligamentum capitis femoris when walking (the simplest but most visual experiments). See: https://kruglayasvyazka.blogspot.com/2024/05/blog-post_29.html #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/24/2025.                                                                                                                     BLOG CONTENT NEWS AND ANNOUNCEMENTS FACEBOOK

2020ArkhipovSV_ProlyginaIV

  Ancient Textual Sources on Ligamentum Teres: Context and Transmission S.V. Arkhipov, I.V. Prolygina   KEYWORDS: ancient medicine; ancient traumatology; Galen; Hippocrates; hip joint; ligamentum capitis femoris; ligament of head of femur; ligamentum teres. SUMMARY Background. One of the least researched anatomical structures of the human body is the ligament of head of femur, most often referred to as ligamentum teres. The history of the nomination of this term, medical contexts of its use, the etymology and the first synonyms (Figure 1) are not sufficiently understood. Purpose. The purpose of the article is to present the most complete collection of evidence from ancient medical authors about the term ligamentum teres, trace the history of its nomination and analyze the gradual changes in the level of knowledge about the anatomy, mechanical and geometric properties of this structure, its pathology and treatment methods. Methods. The study is based on an inter...

EXTERNAL LIGAMENTS & LCF

  external ligaments & LCF First experiments to study the interaction of the external ligaments and the ligamentum capitis femoris in a model: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_6.html Pathological consequences of lengthening of the ligamentum capitis femoris: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_63.html   norm: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_50.html   #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/27/2025.                                                                                                                     BLOG CONTE...

FACEBOOK

  FACEBOOK (publications in the group LIGAMENTUM CAPITIS FEMORIS and this social network) A FACEBOOK section has been created (About publications in this social network). FACEBOOK GROUP  On creating a group.  OLDEST SYNONYMS  Post in Facebook groups. Planar models of the hip joint   Post in Facebook groups. The loading acting onthe femoral head   Post in Facebook groups. Visualization of the LCF by the medial approach   Post in Facebook groups. A FORCE THAT HELPS ROTATE THE PELVIS   Post in Facebook groups.  FIRST EXPERIMENTS ON A MECHANICAL MODEL   Post in Facebook groups. HIP JOINT MODEL WITH LCF ANALOGUE   Post in Facebook groups. EXTERNAL LIGAMENTS & LCF   Post in Facebook groups.  BIOMECHANICS OF THE HIP JOINT WITHOUT LCF   Post in Facebook groups. F. Pauwels vis-à-vis S. Arkhipov ☺   Post in Facebook groups.                           ...

INFERIOR PORTAL FOR HIP ARTHROSCOPY

  Combined PDF version of the article: Arkhipov SV. Arkhipov SV. Inferior Portal for Hip A rthroscopy: A Pilot Experimental Study. This page contains a photocopy of the publication. The links for downloading the PDF version and the addresses of the online versions are given below.  The original in Russian is available at the link: Нижний портал для артроскопии тазобедренного сустава . 

2008HeinerG

  Invention (Patent Application Publication): Heiner G. Implant as an intermediate layer between articulating joint surfaces. DE102007018341A1 (2008). [ translated from German ]   DE102007018341A1 Germany Inventor: Heiner Genrich Current Assignee: Individual Worldwide applications 2007 DE Application DE102007018341A events: 2007-04-13 Application filed by Individual 2007-04-13 Priority to DE102007018341A 2008-10-16 Publication of DE102007018341A1 Status: Ceased   Implant as an intermediate layer between articulating joint surfaces Heiner Genrich   Abstract A surgical implant is an interface between two articulated surfaces together forming a ball and socket joint. The articulation surface (1) and the facing bone surface (2) whose edge (13) is thinner than the centre section (15). The surface (2) matches that of the damaged bone surface. Description The The invention relates to an implant as intermediate between articulating articular surfaces, wherein the intermed...