Skip to main content

Congenital Hip Dislocation. Pathogenesis

 

An original view on the pathogenesis of congenital hip dysplasia, congenital dislocation and subluxation of the hip.

One example of the importance of ligamentum capitis femoris (LCF) and the influence of a mechanical factor on living systems is a group of diseases of the hip joint such as congenital hip dysplasia, congenital subluxation and congenital hip dislocation. The last of these pathological conditions is an extreme degree of severity of the previous two. Common to these pathological conditions is the presence of connective tissue dysplasia syndrome of varying severity. It is based on a decrease in the strength and elasticity of connective tissue structures. The consequence of this is that a standard load, for example, on ligaments causes their plastic deformation: thinning, elongation, and in some cases, rupture. This occurs due to both mechanical and biological processes (for more details, see the Law of Bioinduction).

If, in connective tissue dysplasia syndrome, the level of optimal average daily stresses does not correspond to the actual level of average daily stresses, children develop a pathology called congenital dysplasia of the hip. The bioeffective stresses that appears in the LCF induces pathological biological processes in it, leading to its lengthening. Elongation of the LCF entails an increase in the possible angle of adduction at the hip joint, as well as the cranial and lateral displacement of the femoral head. In the absence of static load, the stresses level in the hip joint elements is determined by muscle activity. Powerful muscles in the hip region tend to displace the femur in the cranial direction. This increases the load on the upper sectors of the femoral head and acetabulum, as well as on the joint capsule and acetabular labrum in the upper part of the joint. At the same time, the load on the lower sectors of the femoral head and acetabulum decreases.

In the prenatal period, as well as in newborns, the head of the femur and the acetabulum are formed from cartilaginous tissue. Under the influence of excess load, they gradually deform. The acetabulum takes the form of an ellipse, and the head of the femur loses its sphericity. The bioeffective stresses that arise in them induce a complex of adaptive processes that we regard as pathological. The joint capsule stretches, becomes thinner in some areas, and thickens in others (in the upper sector), and fibrosis develops. The acetabular labrum, proximal part of the femur, acetabulum, and pelvic bone undergo deformation. The rate of ossification of the cartilaginous models of bones forming the hip joint changes.

Elongation of the LCF, deformation of the acetabulum and femoral head, causes a pattern of subluxation in the hip joint. The persistence of average daily stresses gradients leads to the fact that subluxation turns into hip dislocation, and then neoarthrosis forms. Additional bone mass is synthesized in the form of osteophytes, and fibrosis of ligaments and muscles increases. The processes of deformation of the elements of the hip joint and lengthening of the LCF often occur in parallel. The more the cartilaginous bone models are deformed, the more the LCF lengthens and changes. The pathological process is accelerated if there is a break in the LCF, or initially develops if its break was primary, for example, during pathological childbirth or abnormal position of the fetus. From our point of view, walking with congenital hip dislocation, Duchenne and Trendelenburg symptoms are clear examples of LCF dysfunction.

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, biomechanics, congenital hip dysplasia, congenital subluxation of the hip, congenital hip dislocation, pathogenesis

.                                                                     

In translating to English, the author is assisted by ChatGPT (version 3.5) and the Google Translate service.

If you notice an error, please let us know!

The first version of the text in:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. испр. и доп. изд. Калининград, 2004. (Archipov-Baltic SV. Reasoning about Morphomechanics. The norm – Kaliningrad, 2004. [Rus]) [aleph.rsl.ru]

BLOG CONTENT

ETIOLOGY AND PATHOGENESIS

Comments

Popular posts from this blog

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

Catalog. Classifications of LCF Pathology

  The classifications are intended to systematize of ligamentum capitis femoris pathology and assist in the development of general approaches to its description, registration, analysis and treatment.   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, histology, pathological anatomy, pathology, trauma INTRODUCTION In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. The development of arthroscopic surgery has made it possible to identify various, previously undescribed types of LCF pathology, which prompted the development of various modern classifications based on intraoperative observations. Analysis of literature data and our own morphological observations allowed us to propose a General Classification of the Ligamentum Teres Pathology, which has the form of a collection of classifiers, as well as a Classification of Functions of the Ligamentum Teres. The ...

The First Scientific Mention

  European science has known the LCF for about 2500 years. It is the most important functional connection of the hip joint. The first person to describe the LCF was Hippocrates (c. 460-370 BCE). A written mention of the LCF is found in §1 of his treatise "On the Instrument of redactions". In our opinion, a book created in the library of the Asclepeion of the island of Kos. Hippocrates did not dissection of the human body, did not operate on the hip joint, did not have a CT scan and MRI. How he could discover the LCF? In our view, it is possible that Hippocrates treated a patient with an open hip dislocation. Track Music:  Blue Dot Sessions ,  Vittoro  (CC BY-NC 4.0 DEED / fragment) keywords: ligamentum capitis femoris, ligament of head of femur, ligamentum teres, hip dislocation .                                                     ...

BIOMECHANICS OF THE HIP JOINT WITHOUT LCF

  Biomechanics of the hip joint without LCF Do you remember the comparison of the ligamentum teres with the spring element of a cart? ( 1874SavoryWS ). An analogy could arise after reading the book Bell J. The Principles of Surgery (1801) . Most orthopedists still think so. For more details see: https://roundligament.blogspot.com/2024/04/1836-1840partridger.html   &  1836-1840PartridgeR   (remembering the history of orthopedics) #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/28/2025.                                                                                                                   ...

11th-15th Century

   11th-15th Century Catalog of archived publications of the specified period        11th century 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 1012-1024Avicenna   The author writes about the localization and  variant of the pathology LCF, leading to hip dislocation. 1039-1065Giorgi Mtatsmindeli   The translator mentions the LCF damage, and notes its presence in animals. 12 th century 1120-1140Judah Halevi   The author mentions LCF (גיד) of mammals. 1176-1178(a)Rambam  The author mentions the pathology of LCF (גיד) in humans and points out the presence of this structure in animals. 1176-1178(b)Rambam  The author writes about the localization of LCF (גיד) ) and distinguishes it from a tendon,   blood vessel or nerve. 1185-1235David Kimchi  The author writes about the localization, purpose, and injury of the LCF (גיד), and also talks abo...

LCF in English Bibles

The primary source for translating the Bible into English is the Hebrew literary monument Torah. In its first part, the Book of Bereshit (32:33 ) , there is a mention of ligamentum capitis femoris (LCF), which in Hebrew is called « גיד » (gheed, gid) (1923, 2004PreussJ; 2019ArkhipovSV_SkvortsovDV; 2020ArkhipovSV_ProlyginaIV). Probably one of the earliest written translations of the Bible into Old English was made by Ælfric of Eynsham, who worked approximately between 955–1010 CE (1050Aelfric’s). In Aelfric's Anglo-Saxon Paraphrase, the Hebrew concept of « גיד » [gheed], that is, LCF, is mentioned twice in the 25th and 32nd verses of the XXXII Chapter of the Book of Genesis and is called «sine» ( Figure 1, 2 ). In Middle English, translators Nicholas of Hereford and John Wycliffe named LCF as «synwe», and in John Purvey's Bible edition - «senewe» (1850ForshallJ_MaddenF). In Bibles in Early Modern English, LCF is designated as «senow» and «senowe» (1530TyndaleW; 1535CoverdaleM; 1...

1996(r)ArkhipovSV

    METHOD OF PELVIS OSTEOTOMY (Способ остеотомии таза) Patent Application RU96120699A Inventor Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Application RU96120699/14A events 1996-10-01 Application filed by С . В . Архипов 1999-01-20 Publication of RU96120699A Claims The method of pelvic osteotomy by complete intersection of the ilium above the capsule and acetabulum, characterized in that after arthrotomy of the hip joint the hip bones additionally intersect in front and behind the acetabulum, as well as above it between the capsule and limb, with the displacement of the formed intermediate fragment laterally and osteosynthesis fragments, in addition, plastic or prosthetics of the ligament of the femoral head can be performed, and an osteograft can be fixed over the intermediate fragment. Description of the invention Description in Russian is available at the link: 1996(r) АрхиповСВ (the blog has a translation function)....

163-192Galen

Fragment from the treatise Galen. On anatomical procedures (Περὶ Ἀνατομικῶν Ἐγχειρήσεων, ca. 163-192). The author writes about the high resiliency and hardness of ligamentum capitis femoris (LCF), and also notes its connective function. See our commentary at the link: 163-192Galen [Rus], and  2020ArkhipovSV_ProlyginaIV . Quote [Grc] Περὶ Ἀνατομικῶν Ἐγχειρήσεων. Βιβλιον B. K εφ . ι ʹ . Αλλά χρή σε, καθάπερ επί της χειρός επεσκέψω τους συνδέσμους των οστών, ούτω και νυν επισκέψασθαι πασών των γεγυμνωμένων διαρθρώσεων, πρώτης μεν της κατ' ισχίον, εχούσης ένα μεν εν κύκλω σύνδεσμον, απάντων των άρθρων κοινόν, (ουδέν γάρ έστιν, ότω μή περιβέβληται τοιούτος σύνδεσμος,) έτερον δε τον διά του βάθους εν τη διαρθρώσει κατακεκρυμμένον, ος συνάπτει την κεφαλήν του μηρού τη κατ' ισχίον κοιλότητι, πάνυ σκληρός ών, ώς ήδη δύνασθαι λέγεσθαι νεύρον χονδρώδες. (original source: 1821KühnCG, pp. 328-329) [Lat] De Anatomicis Administrationibus. Liber II. Cap. X. Verum considerare te convenit, ut i...

The Shortest Comments on Genesis, Chap. XXXII-XXXIII

The chosen fragment records ancient views on the symptoms, mechanism, and differential diagnosis of ligamentum capitis femoris (LCF) injury. The author describes the emotional status, work capacity of the patient, circumstances, time, and place of the injury, as a physician in the modern medical record (Genesis 32:8-33:20). Further in the text, apparently, a pathoanatomical investigation is mentioned, confirming the antemortem diagnosis, place of dissection (Genesis 50:2-3), as well as the location of the burial of embalmed remains (Genesis 50:13). Our comments on chapters 32-33 are presented in the table. The quotes are based on the translation of the Book of Bereshit (Genesis) from Hebrew by Isaac Leeser (1922). The shortest comments Quotes from the original source Emotional status and the name of injured person. 32:8   Then   Jacob   was   greatly   afraid,   and   he   felt   distress...

The Birth of the Earth

  The Birth of the Earth The solar system arose 4.5682-4.567 billion years ago (2013HazenRM). It has been found with an accuracy of 1% that the substance of the "Earth-Moon-meteorite" complex is 4.55-4.51 billion years old (2001DalrympleGB). The outlined segment is the immediate beginning of the arrangement of our Home in the Universe. One of the most important conditions for the emergence of life is liquid water (2002ChybaCF_PhillipsCB). Analysis of lithosphere particles aged 4406 (+14/-17) million years showed that they crystallized under conditions of increased water pressure (2012O'NeilJ_FrancisD). Accordingly, moisture was present no later than 160 million years after the "establishment" of the planet. The explanation for this is the proven presence of water in the accretion disk of the newborn Sun, which the Earth could have received in a volume equivalent to one to three oceans (2005DrakeMJ). According to a conservative estimate, half of the Earth's w...