Skip to main content

2024GillHS

 

Content



[i] Annotation

Article by Gill HS. CORR Insights: How Strong Is the Ligamentum Teres of the Hip? A Biomechanical Analysis (2024). To clarify the role of ligamentum capitis femoris (LCF), the author recommends a combination of experimental studies with computer modeling. The text in Russian is available at the following link: 2024GillHS


Where Are We Now?

Hip preservation surgery has seen a rapid increase in usage over the last 15 years [10], in large part driven by the groundbreaking work of Ganz et al. [5], who described the association between femoroacetabular impingement and hip osteoarthritis and who also developed effective methods of surgical dislocation that maintain the blood supply to the femoral head [4]. Arthroscopic methods have now become established and are seeing wider use. The evidence base for hip preservation has grown as well, with minmum 10-year follow-up showing decreased pain and improved function for most patients, and research has identified a number of risk factors for early reoperation [12]. However, the contribution of various anatomical structures to overall hip stability is not fully understood. The ligamentum teres in particular has not been well studied, with most research on it involving populations who are not representative of those who undergo hip preservation surgery. This structure is of clinical interest as lesions in the ligamentum teres are common in patients undergoing hip preservation surgery, and these lesions have been proposed to be a source of pain [2].

In the current issue of Clinical Orthopaedic and Related Research”, Stetzelberger et al. [11] investigated basic biomechanical properties of the ligamentum teres from a relevant cohort (mean age 27 + 8 years, 61% [19 of 31] of whom were male), and they also examined the relationship between these properties and patientspecific factors. Of the original 74 patients from whom specimens were harvested intraoperatively, 31 samples were available for biomechanical testing to establish ultimate load to failure, tensile strength, stiffness, and elastic modulus. These mechanical properties were found to have rather low values in comparison with other ligamentous structures, particularly those from the lower limb. Tensile strength, stiffness, and elastic modulus were also found to be higher for female patients, and excessive femoral version was associated with stronger and stiffer ligaments. The findings suggest that the ligamentum teres is not an important mechanical contributor to overall hip stability. This is intriguing, as the biomechanical function of the ligament remains elusive, but there is a relationship between ligament properties and patient sex as well as with excessive femoral version. It has been suggested that the ligamentum teres plays a role in neuromuscular control.

Given that it is a relatively weak structure, well within the range of available surgical materials, and lesions in the ligament are possibly a source of pain, surgical reconstruction of the ligament may be a useful adjunct to hip-preserving procedures (see the “Read This Next” section). It is important to balance increased surgical complexity against improvements in outcomes.

Where Do We Need To Go?

The current study [8] has shown that the basic mechanical properties have relatively low values, and some associations with donor factors have been revealed. However, the biomechanical and indeed, the neurological sensing roles, remain unknown. The mechanical property values are in similar ranges to previous cadaveric studies but the tensile strength is lower, and the very limited description of the toe region of the load extension has been given. If proprioception is an important role for the ligament, it would be useful to understand the toe region behavior in greater detail. The current (and previous studies) have applied tensile loads to the structure. Considering the ways in which the mechanical behavior of the ACL has been better understood and with the acceptance of the concept of distinct structural bundles [5], with successive fiber recruitment [10], which is consistent with the theorized proprioceptive function, testing the ligamentum teres under physiological loading scenarios would be important. A limitation of the current paper is the low number of samples tested, and this can be addressed simply.

Where Do We Need To Go?

The current study [8] has shown that the basic mechanical properties have relatively low values, and some associations with donor factors have been revealed. However, the biomechanical and indeed, the neurological sensing roles, remain unknown. The mechanical property values are in similar ranges to previous cadaveric studies but the tensile strength is lower, and the very limited description of the toe region of the load extension has been given. If proprioception is an important role for the ligament, it would be useful to understand the toe region behavior in greater detail. The current (and previous studies) have applied tensile loads to the structure. Considering the ways in which the mechanical behavior of the ACL has been better understood and with the acceptance of the concept of distinct structural bundles [5], with successive fiber recruitment [10], which is consistent with the theorized proprioceptive function, testing the ligamentum teres under physiological loading scenarios would be important. A limitation of the current paper is the low number of samples tested, and this can be addressed simply.

How Do We Get There?

Increasing the sample size and repeating the experiments described by Stetzelberger et al. [8] is needed, and this will enable more nuanced assessments of the patient factors that need to be explored. A limitation of Stetzelberger et al. [8] was the way in which cross-sectional area was estimated; while elegant, this method assumed a cylindrical cross-section. Imaging using lightsheet microscopy [6], or similar technology, will enable the ligamentum teres structure to be resolved in 3D and the cross-sectional area to be directly measured. Obtaining specimens that preserve the connection to the host bones would facilitate experiments to explore the fiber behavior under physiological loading; however, there are considerable challenges in obtaining these types of specimens from living donors. It is important to combine experimental studies with computer modelling similar to the approach taken by Gardiner and Weiss [4] for the MCL, as it is difficult to envisage experiments that can fully replicate physiological loading.

Read This Next

Useful information regarding the distribution of nociceptors in the various structures of hip including the ligament teres is given in Haversath et al.

Brady et al. provided some guidance regarding tunnel placement for reconstruction of the ligament teres.
Bajwa and Villar provided a useful editorial commentary regarding reconstruction.
I recommend reading Gardiner and Weiss [4], whilst they studied the MCL which can be directly imaged during loading, their overall approach combined modelling and experimentation to understand function and loading patterns of a ligament. They found that representing specimen specific characteristics was important, and this may well be the case for the hip joint and the ligament teres.


Bajwa AS, Villar RN. Editorial Commentary: Arthroscopic Hip Ligamentum Teres Reconstruction-Reality or Mythology? Arthroscopy. 2018;34:152-154.


Brady AW, Chahla J, Locks R, Mikula JD, Slette EL, LaPrade RF, Philippon MJ. Arthroscopic Reconstruction of the Ligamentum Teres: A Guide to Safe Tunnel Placement. Arthroscopy. 2018;34:144-151.


Haversath M, Hanke J, Landgraeber S, Herten M, Zilkens C, Krauspe R, Jager M. The distribution of nociceptive innervation in the painful hip: a histological investigation. Bone Joint J. 2013;95-B:770-776.


1. Bardakos NV, Villar RN. The ligamentum teres of the adult hip. J Bone Joint Surg Br. 2009;91:8-15.

2. Ganz R, Gill TJ, Gautier E, Ganz K, Krugel N, Berlemann U. Surgical dislocation of the adult hip a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Joint Surg Br. 2001;83:1119-1124.

3. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003:112-120.

4. Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res. 2003;21:1098-1106.

5. Otsubo H, Shino K, Suzuki D, Kamiya T, Suzuki T, Watanabe K, Fujimiya M, Iwahashi T, Yamashita T. The arrangement and the attachment areas of three ACL bundles. Knee Surg Sports Traumatol Arthrosc. 2012;20:127-134.

6. Poola PK, Afzal MI, Yoo Y, Kim KH, Chung E. Light sheet microscopy for histopathology applications. Biomed Eng Lett. 2019;9:279-291.

7. Sienko A, Ekhtiari S, Khanduja V. The growth of hip preservation as a speciality. Knee Surg Sports Traumatol Arthrosc. 2023;31:2540-2543.

8. Stetzelberger VM, Nishimura H, Hollenbeck JFM, Garcia AR, Brown JR, Schwab JM, Philippon MJ, Tannast M. How Strong Is the Ligamentum Teres of the Hip? A Biomechanical. Clinical Orthopaedics and Related Research. 2024.

9. Vahedi H, Yacovelli S, Diaz C, Parvizi J. Surgical Treatment of Femoroacetabular Impingement: Minimum 10-Year Outcome and Risk Factors for Failure. JB JS Open Access. 2021;6.

10. Zavatsky AB, Wright HJ. Injury initiation and progression in the anterior cruciate ligament. Clin Biomech (Bristol, Avon). 2001;16:47-53.


 


Gill HS. CORR Insights: How Strong Is the Ligamentum Teres of the Hip? A Biomechanical Analysis. Clinical Orthopaedics and Related Research, 2024;482(9)1696-7.  DOI: 10.1097/CORR.0000000000003206   ovid.com  ,  purehost.bath.ac.uk


Gill, Harinderjit S. DPhil, DSc  - Professor, Department of Mechanical Engineering, Claverton Down Campus: University of Bath, Claverton Down, Bath, BANES BA2 7AY, UK, Email: R.Gill @ ath.ac.uk


ligamentum capitis femoris, ligamentum teres, ligament of head of femur, role, strength, mechanical strength, biomechanics



NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7


                                                                   

Comments

Popular posts from this blog

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

2025SarassaC_HerreraAM

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article : Sarassa C. et al . I ntraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance S tability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes (2025). The article describes a technique for fixing the femoral head using the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2025SarassaC_HerreraAM . [ii]   Original text Abstract Background Developmental dysplasia of the hip (DDH) with complete dislocation (grade ≥III) in older patients often requires open reduction. However, achieving long-term stability remains challenging. This study introduces and evaluates a novel surgical technique, intraosseous tunneling ...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

Full access to the PDF version of the book: HUMAN CHILDREN

  Full access to the PDF version of the book is now available: Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. (In Russian)].  Google Play  ,  Google Book , drive.google.com   ,   kruglayasvyazka.blogspot.com   [Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Эссе, снабженное ссылками на интерактивный материал. 2-е изд. перераб. и доп. Йоэнсуу : Издание Автора , 2025.]   Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition. He supplemented the co-author's family legends, retellings of halluc...

2012MansmannKA

  Invention (Patent Application Publication): Mansmann KA. Tendon-sparing implants for arthroscopic replacement of hip cartilage. WO2012162571A1 (2012).  The original text of the document contained defects.   WO2012162571A1S US Inventor: Kevin A. Mansmann Worldwide applications 2012 WO Application PCT/US2012/039481 events: 2012-05-24 Application filed by Mansmann Kevin A 2012-11-29 Publication of WO2012162571A1   Tendon-sparing implants for arthroscopic replacement of hip cartilage Kevin A. Mansmann   Abstract Surgical implant devices are disclosed which will allow completely arthroscopic resurfacing of the acetabular socket, and the femoral head, in hip joints, in both humans, and in animals such as dogs. Such devices, made of flexible polymers with smooth articulating surfaces and porous anchoring surfaces, can be provided with centered openings, to allow a surgeon to spare the major ligament (the ligamentum teres) which connects the femoral head to the pelv...

1753TarinP

  Fragments from the book Tarin P. Ostéo-graphie (1753). The author notes the localization of ligamentum capitis femoris (LCF) and uses synonyms: ligament rond, ligamentum teres capitis femoris. The text is prepared for machine translation using a service built into the blog from Google or your web browser. Quote p. 24 Les Ligamens de l'extrémité inférieure sont, 1°. la Membrane capsulaire, &c. de la cavité cotyloïde, le Ligament rond, l'Appareil ligamenteux propre à cette cavité; le Ligament transveríal interne de son bord, le transversal externe, les deux Ligamens glanduleux; … Quote p. 54. Illæ tres offeæ portiones simul unitæ Cavitatem cotyloïdeam q.t. a. constituunt, in qua occurrit Foveols h. glandulas synoviales articulationis excipiens, cuique sesc inserit ligamentum teres capitis femoris, &c. Vid. t. u. v. TAB. I. II. III. External links Tarin P. Ostéo-graphie, ou Description des os de l'adulte, du foetus, &c. Precedée d'une introduction a l'etu...

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.   January 22, 2026 Full access to the PDF version of the book: Human Children January 16, 2026 The necessary is needed by no one   (facebook) January 15, 2026 Tweet of January 15, 2026      A Novel Technique for Proximal Fixation   (facebook) January 14, 2026 2026 ArkhipovSV.  THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS ( A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction ). January 05, 2026 2018YoussefAO The article describes a me thod for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_O...

Tweet of January 15, 2026

  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons.  DOI: 10.13140/RG.2.2.25269.33763   https://roundligament.blogspot.com/2026/01/the-gifts-of-magi-for-orthopedic.html Tweet of January 15, 2026 #ligamentum_teres   #hip_joint #arthroscopy #reconstruction BLOG CONTENT TWITTER OR X                                                                            

TWITTER or X

  TWITTER OR X  (Publications on platform X or Twitter) Tweet of December 31, 2025   Tweet of December 30, 2025 Tweet of December 29, 2025 Tweet of December 19, 2025 T weet of November 20, 2025 Tweet of September 21, 2025 Tweet of August 30, 2025 Tweet of July 31, 2025 Tweet of July 28, 2025 Tweet of July 8, 2025 Tweet of June 24, 2025 Tweet of June 22, 2025   Tweet of June 20, 2025    Tweet of May 5, 2025 Tweet of May3, 2025 Tweet of April 9, 2025 Tweet of March 12, 2025   ( Survey ) Tweet of February 28, 2025 Tweet of February 22, 2025 Tweet of February 8, 2025 Tweet of January 18, 2025 Tweet of January 7, 2025 Tweet of January 4, 2025 Tweet of December 31, 2024 Tweet of October 30, 2024 Tweet of October 8, 2024 Tweet of August 5, 2024 Tweet of Jul 29, 2024  Tweet of Jul 26, 2024 Tweet of Jul 22, 2024   Tweet of Jul 17, 2024   Tweet of Jul 12, 2024   Tweet of Jul 11, 2024   Tweet of Jul 7, 2024 Tweet of Jul 6, 2024   Twe...