Skip to main content

Dinosauria

 

DINOSAURIA: Saurischia & Ornithischia

Approximately 315.5 Ma, diapsids (Diapsida) split off from sauropsids, and 307 Ma, Sauria split off from them, which in turn split 265.1 Ma into the ancestors of lizards (Lacertilia) and archosaurs (Archosauria) (2014EzcurraMD_ButlerRJ). The split of turtles (Testudines) from archosaurs occurred at least 255 Ma (2012ChiariY_DelsucF). The oldest archosaur of the avian lineage, Asilisaurus kongwe, which is a sister taxon to Dinosauria, dates back to the interval 247.2-242.0 Ma, designated the Anisian stage of the Middle Triassic (2010NesbittSJ_TsujiLA; 2023CohenKM_CarN). The branch extending to dinosaurs originates from archosaurs. Their oldest remains were found in a rock formed 233.23±0.73 Ma (2018LangerMC_DaRosaÁAS). Among dinosaurs, there are Saurischia and Ornithischia varieties.

Dinosaurs.
Fragment of the exposition of the Darwin Museum (Moscow), photo by the author.


The study of soft tissues of the musculoskeletal system of such early tetrapods is possible only indirectly, focusing on bone markers. In particular, the non-ossified inner wall of the acetabulum is an osteological correlate of the presence of internal ligaments in the hip joint (2015TsaiHP_HollidayCM). A.N. Kuznetsov, A.G. Sennikov (2000) distinguish three types of perforated acetabulums: those with small and large holes, as well as through marginal notches. According to the authors' observations, the non-perforated (closed) acetabulum is the original structure and is found only in primitive forms. Thus, the morphological series of progressive transformation from early thecodonts to birds begins with a non-perforated acetabulum. Subsequently, a small acetabular opening appears (the first type). It gradually increases in size (type II) and reaches its full development (type III), called "open acetabulum". The opening in the acetabulum is found in the following ancient species: Lagosuchus talampayensis (236-234 Ma), Stauricosaurus pricei (233.23 Ma), Herrerasaurus ischigualastensis (237-201 Ma), Terrestrisuchus gracilis (209-201 Ma), Orthosuchus strombergi (209-191 Ma), Tyrannosaurus rex (83.5-66.0 Ma), Ankylosaurus sp. (68-66 Ma) (2000KuznetsovAN_SennikovAG).

Skeleton of a tabrosaurus baby Tabrosaurus bataar (Upper Cretaceous, Mongolia, copy); exhibit of the Darwin Museum (Moscow), photo by the author.


It was established that fossil archosauromorphs had three ligaments in the hip joint: iliofemoral, ischiofemoral, and pubofemoral. The pubofemoral and ischiofemoral ligaments were connected distally, forming the ligamentum capitis femoris (LCF), attached to the fovea capitis. These two ventral ligaments formed an intracapsular double origin of the LCF in the case of a completely perforated acetabulum. In the imperforate acetabulum, the pubofemoral and ischiofemoral ligaments originated at the outer pubic and ischial margins of the acetabulum, respectively. In mature skeletons, the LCF formed a flat or concave fossa on the femoral head. In immature skeletons, the LCF articulated with the cartilage that formed the epiphysis, as in modern juvenile birds and crocodilians. For this reason, the femoral head fossa is not found in fossil bones. Among dinosaurs, distinctly concave or flat fovea capitis have rarely been observed in coelurosaurian theropods. In the saurischian lineage, the femoral head fossa varied from shallow in sauropodomorphs to flat in tyrannosaurids. Basal dinosauromorphs had an indistinct femoral head fossa, suggesting a significant thickness of hyaline cartilage. The evolution of the hip joint in basal dinosaurs is characterized by independent modifications of the two ventral capsular ligaments in the LCF. The pubofemoral and ischiofemoral ligaments in diapsids and sauropodomorphs had a common femoral attachment at the fossa of the femoral head. It was located entirely on the epiphyseal hyaline cartilage, so it did not leave a fossa on the subchondral surface. It is assumed that the LCF was relatively shorter in sauropodomorphs, more basal than mussaurids (2018TsaiHP_HollidayCM). In the illustrations to their work, the cited researchers provided examples of the presence of LCF features: a fossa on the femoral head and a hole in the floor of the acetabulum. Based on the above, we can confidently state that LCF was present in the following extinct species: Allosaurus fragilis (157-145 Ma), Anzu wyliei (67.2-66 Ma), Apatosaurus sp. (161-145 Ma), Asilisaurus kongwe (247-242 Ma), Coelophysis (237-183 Ma), Coelurus fragilis (157-145 Ma), Deinonychus antirrhopus (125-101 Ma), Diplodocus carnegii (157-145 Ma), Falcarius utahensis (139-134.6 Ma), Herrerasaurus ischigualastensis (237-201 Ma), Liliensternus liliensterni (228-201.3 Ma), Mussaurus (228-209 Ma), Piatnitzkysaurus floresi (180-168 Ma), Plateosaurus engelhardti (228-209 Ma), Tyrannosaurus rex (83.5-66.0 Ma).

View of the hip joint of Diplodocus carnegi Hatcher, Upper Jurassic (161.5-145.0 Ma); exposition of the Orlov Paleontological Museum (Moscow); photo by the author.


Signs of the presence of LCF are noted on the femur and in early dinosauromorphs - contemporaries of dinosaurs and other archosaurs of the late Triassic period (237-201.3±0.2 Ma): Lagerpeton chanarensis, Dromomeron romeri, Dromomeron gregorii. These creatures, unlike dinosaurs, had a groove for attaching the LCF in the form of a barely noticeable gap between the anteromedial and posteromedial tubercles on the head of the femur (2009NesbittSJ_RoweT).

The brief overview of LCF in extinct species indicates that this anatomical element was present in the hip joints of the earliest tetrapods. LCF continued to develop among archosaurs and dinosaurs. While in early tetrapod forms following Tiktaalik roseae, the LCF was located in the upper section of the hip joint, it "migrated" to the lower section after Eryops megacephalus. In dinosaurs, the LCF became significantly more complex, forming a structure of multiple ligaments that functioned together within a perforated acetabulum. 

References

Ezcurra MD, Scheyer TM, Butler RJ. The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLOS ONE. 2014;9(2)e89165. [journals.plos.org]

Chiari Y, Cahais V, Galtier N, Delsuc F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). Bmc Biology. 2012;10(1)1-15. [link.springer.com]

Nesbitt SJ, Sidor CA, Irmis RB, Angielczyk KD, Smith RM, Tsuji LA. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature. 2010;464(7285)95-8. [nature.com cienciaescolar.wordpress.com]

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Langer MC, Ramezani J, Da Rosa ÁAS. U-Pb age constraints on dinosaur rise from south Brazil. Gondwana Research. 2018;57:133-40. [sciencedirect.com]

Tsai HP, Holliday CM. Articular soft tissue anatomy of the archosaur hip joint: structural homology and functional implications. Journal of Morphology. 2015;276(6)601-30. [researchgate.netonlinelibrary.wiley.com]

Kuznetsov AN, Sennikov AG. On the function of a perforated acetabulum in archosaurs and birds. Paleontological Journal. 2000;34(4)439-48. [researchgate.net]

Tsai HP, Middleton KM, Hutchinson JR, Holliday CM. Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia. Journal of Vertebrate Paleontology. 2018;38(1)e1427593.  [tandfonline.com , researchonline.rvc.ac.uk]

Nesbitt SJ, Irmis RB, Parker WG, Smith ND, Turner AH, Rowe T. Hindlimb osteology and distribution of basal dinosauromorphs from the Late Triassic of North America. Journal of Vertebrate paleontology. 2009;29(2)498-516.  [tandfonline.com]


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, doctrine, animals, reptile, dinosauria


                                                                     

The original text in Russian is available at the link: Dinosauria

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

BLOG CONTENT

  T he ligament of the head of femur or ligamentum capitis femoris (LCF) is the key to a graceful gait and understanding the causes of hip joint diseases. We present promising scientific knowledge necessary for preserving health,  to create new implants and techniques  of treating degenerative  pathology and damage of the hip joint. Project objective : preserving a normal gait and quality of life, helping to study of hip joint biomechanics, developing effective treatments for its diseases and injuries. In translating to English, the author is assisted by ChatGPT (version 3.5)  and the Google Translate service .  We're sorry for any flaws in the syntax. The meaning makes up for the imperfections!     TABLES OF CONTENTS    Acetabular Canal   (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligam...

1827KühnCG

  Fragment from the book Kühn CG. Clavdii Galeni Opera omnia (1827). Pseudo-Galen notes the connecting function of the ligamentum capitis femoris (LCF) and also specifies the proximal and distal attachment sites. See our commentary at the link: 1827KühnCG [Rus].  Quote [Grc] Εἰσαγωγὴ   ἢ   Ἰτρός . K εφ .  ιβ . [ Περί   όστεολογἰας .] μηρου δέ έν μεν οστούν .  συμβάλλει δε επικεκαμμένη μετρίως τη κεφαλή αυτού εις βαθείαν κοτύλην του ισχίου και νεύρῳ απήρτηται εκφυομένω εκ μέσης της κοτύλης και εμφυομένω εις μέσην την κεφαλήν του μηρού . (original source: 1827KühnCG, pp. 723-724) [Lat Introductio, seu Medicus. Cap. XII.   [De osteologia] Femoris os unum est, cujus caput leniter reflexum in coxae profundum sinum conjicitur. Quam commissuram nervus, qui e medio sinu prodit et in medium femoris caput inseritur, continet. (original source: 1827KühnCG, pp. 723-724) Translation [Eng] Introduction, or the Physician. Chapter 12. [On osteology] The hip has ...

The Solar System

  The Solar System As a result of a mysterious catastrophic event about 13.8 billion years ago, the Universe was formed (2012HawkingS; 2020AghanimN_RoudierG). In it, giant cloud-like accumulations of plasma, molecules and dust became the points of star formation (2011MurrayN). A series of their generations, igniting, functioning and collapsing, led to the appearance of various chemical elements through staged reactions of nuclear fusion (1998IshkhanovBS_TutynIA). The Sun was born for at least ten million years by compressing a concentration of molecular gas and parts of the most ancient stars (2010HanslmeierA). As a result, 4.5682-4.567 billion years ago, the Solar System self-organized, at the dawn of its life consisting of a central luminary and a protoplanetary gas and dust disk (2013HazenRM). At least the oldest meteorite inclusions were fused 4.568-4.565 billion years ago, and at most three million years later, accretion of chondrite globules occurred (1995AllègreCJ_GöpelC). T...

2003IvanovYV

  Ivanov YV, panel, wood carving – Jacob Wrestling with the Angel (2003). Variant of depicting the  circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis:  25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Ivanov Yuri Vitalievich – Jacob Wrestling with the Angel (2003);  im...

1666VeslingJ

  Fragments from the book Vesling J. Syntagma anatomicum (1666). The author describes the attachment, properties and role of the ligamentum capitis femoris (LCF). The text uses several synonyms: ligamentum teres, rotundo, tereti. Quote p. 269 [Lat] Superior appendix cum adjuncto processu, amplum, globosum que femoris caput constituit, valida cervice subnixum, quod intra cavitatem ossis Ischii, Ilium, & Pubis concursu productam, (Acetabulum alias, Pyxidemque nominant) reconditur. Detinetur in hoc sinu robustis LIGAMENTIS: lato uno, & membranoso, quod articulum totum circumdat, tum rotundo altero, & tereti, quod ab ipsa cavitate productum, statim in caput susceptum demittitur. Quote p. 276 [Lat] Fig. VII … b. Ligamentum teres, ex Acetabulo natum. Translation [Eng] Quote p. 269 . The superior appendage, together with the accessory process, forms the large, spherical head of the femur, supported by a strong neck, which is placed in a cavity formed by the ischium, ilium, and...

1614PlatterF

Fragment from the book Platter F. Observationum (1614). The author notes the role of the ligamentum capitis femoris (LCF) in fixing the femur in the acetabulum and the possibility of its lengthening  (synovitis) . Quote pp. 141-142 [Lat] Cruris dextri astrictio & contractio, post coxendicum dolorem. Cùm enim ligamentum illud articulum circumd ás, omnium totius corporis ligamentorum, quae articulos ambiunt, sit amplissimum; fieri potest, ut adeò cedat, ut (sicuti saepe sit) femoris caput, è suo sinu devoluatur, & in membranae illius (quae cùm erassissima sit, prae omnibus totius corporis ligamentis, nunquam vi qualicunque disrumpi potest) amplitudine seu capacitate subsistat, elongato simul & vehementer attracto, tereti illo & crasso, quod caput aliàs in suo sinu retinere solet, ligamento. Quod & ob tensionem illam nimiam, astrictum & induratum, chordae alicuius crasssissimae & firmisimae instar, quae nunquam disrumpi, nunquam ab acetabulo, cuius cartilag...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», July 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

344-411Rufinus Aquileiensis

  A fragment of the manuscript of the translation of Josephus Flavius' Antiquities of the Jews ( Ἰουδαϊκὴ ἀρχαιολογία / De antiquitate iudaica) into Latin by Rufinus Aquileiensis. The translator worked approximately between 344 and 411 in the Roman Empire. His work was rewritten between 1150 and 1199 in Northern France. In Josephus's translation of Antiquities of the Jews, ligamentum capitis femoris (LCF) is referred to as «neruum». The selected fragment deals with the LCF of an animal and discusses a biblical episode of its damage in a human. See our commentary at the link: 344-411Rufinus Aquileiensis [Rus]. T he original text: 93-94JosephusF . Quote [ Lat] De antiquitate iudaica. Liber primus (original source: 1150JosephusF, p. 22, fragment) Translation [Eng] Antiquities of the Jews. Book 1. 20.2 When Jacob had made these appointments all the day, and night came on, he moved on with his company; and, as they were gone over a certain river called Jabboc, Jacob was left behi...

1794LoderJC

  Drawings and descriptions from book Loder JC. Tabulae anatomicae (1794). Image of the hip joint, ligamentum capitis femoris (LCF) and peripheral part of the acetabular canal ( hiatus acetabuli ,  see Fig. 2.10) .   External links Loder JC. Tabulae anatomicae quas ad illustrandam humani corporis fabricam colle git et curavit. Vinariae, 1794. [ wellcomecollection.org ] Authors & Affiliations Justus Ferdinand Christian Loder (1753-1832) was a German anatomist and surgeon, professor of surgery and anatomy at the University of Jena. [ wikipedia.org ] Justus Christian Loder (1801?) Engraving by F. Müller after a painting by Fr. A. Tischbein; original in the  wikimedia.org   collection (CC0 – Public Domain, no changes)   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, image                                    ...

150-250Targum Jonathan

  Fragments from the Targum Jonathan on Genesis. Tractate was written between about 150 - 250 in lend of Israel. The text is a combination of a translation and commentary on the book of Bereshit. The unknown compiler mentions ligamentum capitis femoris (LCF) in an animal and an episode of its damage in a human. See our commentary at the link: 150-250Targum Jonathan [Rus]. Quote 1. [Heb] Genesis. 32:33 (original source:  sefaria.org ) Quote 2. [Heb] Genesis. 43:16 (original source:  sefaria.org ) Translation Quote 1. [Eng] Genesis. 32:33 Therefore, the sons of Israel eat not the sinew which shrank, which is in the hollow of the thigh of cattle and of wild animals, until this day; because the Angel touched and laid hold of the hollow of the right thigh of Jakob, in the place of the sinew which shrank. (Transl. by J.W. Etheridge (186 2 ) ; original source: targum.info ) Quote 2. [Eng] Genesis. 43:16 And Joseph saw Benjamin with them: and he said to Menasheh whom he had mad...