Skip to main content

Dinosauria

 

DINOSAURIA: Saurischia & Ornithischia

Approximately 315.5 Ma, diapsids (Diapsida) split off from sauropsids, and 307 Ma, Sauria split off from them, which in turn split 265.1 Ma into the ancestors of lizards (Lacertilia) and archosaurs (Archosauria) (2014EzcurraMD_ButlerRJ). The split of turtles (Testudines) from archosaurs occurred at least 255 Ma (2012ChiariY_DelsucF). The oldest archosaur of the avian lineage, Asilisaurus kongwe, which is a sister taxon to Dinosauria, dates back to the interval 247.2-242.0 Ma, designated the Anisian stage of the Middle Triassic (2010NesbittSJ_TsujiLA; 2023CohenKM_CarN). The branch extending to dinosaurs originates from archosaurs. Their oldest remains were found in a rock formed 233.23±0.73 Ma (2018LangerMC_DaRosaÁAS). Among dinosaurs, there are Saurischia and Ornithischia varieties.

Dinosaurs.
Fragment of the exposition of the Darwin Museum (Moscow), photo by the author.


The study of soft tissues of the musculoskeletal system of such early tetrapods is possible only indirectly, focusing on bone markers. In particular, the non-ossified inner wall of the acetabulum is an osteological correlate of the presence of internal ligaments in the hip joint (2015TsaiHP_HollidayCM). A.N. Kuznetsov, A.G. Sennikov (2000) distinguish three types of perforated acetabulums: those with small and large holes, as well as through marginal notches. According to the authors' observations, the non-perforated (closed) acetabulum is the original structure and is found only in primitive forms. Thus, the morphological series of progressive transformation from early thecodonts to birds begins with a non-perforated acetabulum. Subsequently, a small acetabular opening appears (the first type). It gradually increases in size (type II) and reaches its full development (type III), called "open acetabulum". The opening in the acetabulum is found in the following ancient species: Lagosuchus talampayensis (236-234 Ma), Stauricosaurus pricei (233.23 Ma), Herrerasaurus ischigualastensis (237-201 Ma), Terrestrisuchus gracilis (209-201 Ma), Orthosuchus strombergi (209-191 Ma), Tyrannosaurus rex (83.5-66.0 Ma), Ankylosaurus sp. (68-66 Ma) (2000KuznetsovAN_SennikovAG).

Skeleton of a tabrosaurus baby Tabrosaurus bataar (Upper Cretaceous, Mongolia, copy); exhibit of the Darwin Museum (Moscow), photo by the author.


It was established that fossil archosauromorphs had three ligaments in the hip joint: iliofemoral, ischiofemoral, and pubofemoral. The pubofemoral and ischiofemoral ligaments were connected distally, forming the ligamentum capitis femoris (LCF), attached to the fovea capitis. These two ventral ligaments formed an intracapsular double origin of the LCF in the case of a completely perforated acetabulum. In the imperforate acetabulum, the pubofemoral and ischiofemoral ligaments originated at the outer pubic and ischial margins of the acetabulum, respectively. In mature skeletons, the LCF formed a flat or concave fossa on the femoral head. In immature skeletons, the LCF articulated with the cartilage that formed the epiphysis, as in modern juvenile birds and crocodilians. For this reason, the femoral head fossa is not found in fossil bones. Among dinosaurs, distinctly concave or flat fovea capitis have rarely been observed in coelurosaurian theropods. In the saurischian lineage, the femoral head fossa varied from shallow in sauropodomorphs to flat in tyrannosaurids. Basal dinosauromorphs had an indistinct femoral head fossa, suggesting a significant thickness of hyaline cartilage. The evolution of the hip joint in basal dinosaurs is characterized by independent modifications of the two ventral capsular ligaments in the LCF. The pubofemoral and ischiofemoral ligaments in diapsids and sauropodomorphs had a common femoral attachment at the fossa of the femoral head. It was located entirely on the epiphyseal hyaline cartilage, so it did not leave a fossa on the subchondral surface. It is assumed that the LCF was relatively shorter in sauropodomorphs, more basal than mussaurids (2018TsaiHP_HollidayCM). In the illustrations to their work, the cited researchers provided examples of the presence of LCF features: a fossa on the femoral head and a hole in the floor of the acetabulum. Based on the above, we can confidently state that LCF was present in the following extinct species: Allosaurus fragilis (157-145 Ma), Anzu wyliei (67.2-66 Ma), Apatosaurus sp. (161-145 Ma), Asilisaurus kongwe (247-242 Ma), Coelophysis (237-183 Ma), Coelurus fragilis (157-145 Ma), Deinonychus antirrhopus (125-101 Ma), Diplodocus carnegii (157-145 Ma), Falcarius utahensis (139-134.6 Ma), Herrerasaurus ischigualastensis (237-201 Ma), Liliensternus liliensterni (228-201.3 Ma), Mussaurus (228-209 Ma), Piatnitzkysaurus floresi (180-168 Ma), Plateosaurus engelhardti (228-209 Ma), Tyrannosaurus rex (83.5-66.0 Ma).

View of the hip joint of Diplodocus carnegi Hatcher, Upper Jurassic (161.5-145.0 Ma); exposition of the Orlov Paleontological Museum (Moscow); photo by the author.


Signs of the presence of LCF are noted on the femur and in early dinosauromorphs - contemporaries of dinosaurs and other archosaurs of the late Triassic period (237-201.3±0.2 Ma): Lagerpeton chanarensis, Dromomeron romeri, Dromomeron gregorii. These creatures, unlike dinosaurs, had a groove for attaching the LCF in the form of a barely noticeable gap between the anteromedial and posteromedial tubercles on the head of the femur (2009NesbittSJ_RoweT).

The brief overview of LCF in extinct species indicates that this anatomical element was present in the hip joints of the earliest tetrapods. LCF continued to develop among archosaurs and dinosaurs. While in early tetrapod forms following Tiktaalik roseae, the LCF was located in the upper section of the hip joint, it "migrated" to the lower section after Eryops megacephalus. In dinosaurs, the LCF became significantly more complex, forming a structure of multiple ligaments that functioned together within a perforated acetabulum. 

References

Ezcurra MD, Scheyer TM, Butler RJ. The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLOS ONE. 2014;9(2)e89165. [journals.plos.org]

Chiari Y, Cahais V, Galtier N, Delsuc F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). Bmc Biology. 2012;10(1)1-15. [link.springer.com]

Nesbitt SJ, Sidor CA, Irmis RB, Angielczyk KD, Smith RM, Tsuji LA. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature. 2010;464(7285)95-8. [nature.com cienciaescolar.wordpress.com]

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Langer MC, Ramezani J, Da Rosa ÁAS. U-Pb age constraints on dinosaur rise from south Brazil. Gondwana Research. 2018;57:133-40. [sciencedirect.com]

Tsai HP, Holliday CM. Articular soft tissue anatomy of the archosaur hip joint: structural homology and functional implications. Journal of Morphology. 2015;276(6)601-30. [researchgate.netonlinelibrary.wiley.com]

Kuznetsov AN, Sennikov AG. On the function of a perforated acetabulum in archosaurs and birds. Paleontological Journal. 2000;34(4)439-48. [researchgate.net]

Tsai HP, Middleton KM, Hutchinson JR, Holliday CM. Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia. Journal of Vertebrate Paleontology. 2018;38(1)e1427593.  [tandfonline.com , researchonline.rvc.ac.uk]

Nesbitt SJ, Irmis RB, Parker WG, Smith ND, Turner AH, Rowe T. Hindlimb osteology and distribution of basal dinosauromorphs from the Late Triassic of North America. Journal of Vertebrate paleontology. 2009;29(2)498-516.  [tandfonline.com]


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, doctrine, animals, reptile, dinosauria


                                                                     

The original text in Russian is available at the link: Dinosauria

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

CATALOG OF LITERATURE ON THE LCF

  Catalog of literature on the LCF (Books, articles, links, reference, mention …) NEOLITHIC AND BRONZE (8,000 to 2,000 years BCE)  https://roundligament.blogspot.com/2024/10/neolithic-and-bronze.html   IRON AGE (10th-1st century BCE) https://roundligament.blogspot.com/2024/10/iron-age.html   1st-10th Century https://roundligament.blogspot.com/2024/10/1st-10th-century.html   11th-15th Century https://roundligament.blogspot.com/2024/10/11th-15th-century.html   16th Century https://roundligament.blogspot.com/2024/10/16th-century.html   17th Century https://roundligament.blogspot.com/2024/10/17th-century.html   18th Century https :// roundligament . blogspot . com /2024/10/18 th - century . html   19th Century https://roundligament.blogspot.com/2024/10/19th-century.html   20th Century https://roundligament.blogspot.com/2024/10/20th-century.html   21st Century https://roundligament.blogspot.com/2024/10/21st-century.html BLOG CONTENT TH...

1833GerdyPN

  P.N. Gerdy, in his experiment, discovered tensioning of the ligamentum capitis femoris (LCF) during thigh adduction. At the same time, it was noted for the first time that the consequence of LCF tension during hip adduction is a downward and lateral displacement of the femoral head. Normally, this mechanism provides unloading of the upper articular surfaces when supporting one leg (see 1874SavoryWS ). The translation from French was done in collaboration with ChatGPT 3.5.   Gerdy PN. Physiologie médicale, didactique et critique. T. 1. Paris: Librairie de Crochard, 1833. [fragment] Quote pp. 551-554   L'inclinaison de la cuisse en dehors, que l'on nomme son abduction, est un mouvement assez étendu, mais qui pourtant ne permet pas à la cuisse de se placer perpendiculairement à sa direction verticale. Les batteleurs peuvent se reposer sur un plan horizontal, les cuisses écartées en sens opposé. Dans l'inclinaison ...

LCF in 2025 (May)

  LCF in 2025 (May): Quotes from articles and books published in May 2025 mentioning the ligamentum capitis femoris. Teytelbaum, D. E., Bijanki, V., Samuel, S. P., Silva, S., Israel, H., & van Bosse, H. J. Does Open Reduction of Arthrogrypotic Hips Cause Stiffness?. Journal of Pediatric Orthopaedics , 10-1097. DOI: 10.1097/BPO.0000000000002940  [i]   journals.lww.com   SANTORI, N., & TECCE, S. M. (2025). FUTURE DIRECTIONS IN ARTHROSCOPY FOR HIP TRAUMA. Advancements of Hip Arthroscopy in Trauma , 136-143.  [ii]   books.google   RANDELLI, F. (2025). ARTHROSCOPIC FREE-BODY REMOVAL AFTER DISLOCATION OR AFTER BULLET/BOMB. Advancements of Hip Arthroscopy in Trauma , 1-11.  [iii]   books.google   APRATO, A. (2025). ARTHROSCOPIC TECHNIQUES FOR FEMORAL HEAD FRACTURE REDUCTION AND FIXATION. Advancements of Hip Arthroscopy in Trauma , 38.  [iv]   books.google   Brinkman, J. C., & Hartigan, D. E. (2025). Indications f...

1290Egerton1066

  Miniature Jacob Wrestling with the Angel from Egerton 1066 (ca. 1270 – 1290?).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Jacob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Initial E from Egerton 1066 – Jacob Wrestling with the Angel (ca. 1270 – 1290?) original ...

ChatGPT. Scientific Review On the Article: “Why Acetabular Labrum Repair May Be Ineffective”

  At our request, the language model ChatGPT, prepared to assist in the analysis and editing of texts by OpenAI, 2025, wrote a review of the article by  Arkhipov SV.   Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint   ([Ru]  Архипов СВ .  Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе.  06.04.2025 ).  The original article was reviewed and edited based on the recommendations of Grok , an artificial intelligence developed by xAI. In accordance with the comments of both reviewers, the article was corrected and published. Below is the original text of the review by ChatGPT: Scientific Review and Critical Commentary On the article: “Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint” Author: S.V. Arkhipov, Independent Researcher, Joensuu, Finland I. Scientific...

INVITATION TO COOPERATION

  We offer cooperation in the following areas: - biomechanics of the hip joint in normal and pathological conditions; - hip joint endoprostheses with ligament analogues; - non-standard methods of arthroscopy of the hip joint; - reconstruction and prosthetics of the ligament of head of femur; - early diagnosis of coxarthrosis and pathology of the ligament of head of femur; - pathogenesis of dystrophic diseases of the hip joint; - joints with flexible elements for walking robots. Please send correspondence to: archipovlcfbooks&gmail.com With sincere respect to you, Sergey Arkhipov                                                                      . Translated from Russian in collaboration with ChatGPT (version 3.5, developed by OpenAI) and the Google Translate service. Original text: Мы п...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An Instrument of Knowledge and Innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     R                   T                   ...

1996(c)ArkhipovSV

  Hip joint prostheses ( Протез тазобедренного сустава ) Patent Application RU96110383A Inventor Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Application RU96110383/14A events 1996-05-23 Application filed by С.В. Архипов 1998-08-10 Publication of RU96110383A Claims 1. The hip joint prosthesis comprising a femoral component, are fixed in the femoral head, characterized in that the femoral component is designed as a pyramid whose base has the form of a spherical surface, and the faces contains ledges perpendicular trabecular bone, in addition to the femoral component coupled to the flexible member, which is passed through a through hole formed in the femoral component, and the ends of the flexible member are provided with fastening elements. 2. The prosthesis of claim. 1, characterized in that the fastening elements are made of a metal with shape memory. 3. The prosthesis of claim. 1, characterized in that the faces of the femoral component have...

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

ACETABULAR CANAL

   Acetabular Canal  (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  Acetabular Canal.  Part 2.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  Acetabular Canal.  Part 3.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  BLOG CONTENT THE DOCTRINE OF LCF MORPHOLOGY AND TOPOGRAPHY                                                                                                          ...