Skip to main content

Dinosauria

 

DINOSAURIA: Saurischia & Ornithischia

Approximately 315.5 Ma, diapsids (Diapsida) split off from sauropsids, and 307 Ma, Sauria split off from them, which in turn split 265.1 Ma into the ancestors of lizards (Lacertilia) and archosaurs (Archosauria) (2014EzcurraMD_ButlerRJ). The split of turtles (Testudines) from archosaurs occurred at least 255 Ma (2012ChiariY_DelsucF). The oldest archosaur of the avian lineage, Asilisaurus kongwe, which is a sister taxon to Dinosauria, dates back to the interval 247.2-242.0 Ma, designated the Anisian stage of the Middle Triassic (2010NesbittSJ_TsujiLA; 2023CohenKM_CarN). The branch extending to dinosaurs originates from archosaurs. Their oldest remains were found in a rock formed 233.23±0.73 Ma (2018LangerMC_DaRosaÁAS). Among dinosaurs, there are Saurischia and Ornithischia varieties.

Dinosaurs.
Fragment of the exposition of the Darwin Museum (Moscow), photo by the author.


The study of soft tissues of the musculoskeletal system of such early tetrapods is possible only indirectly, focusing on bone markers. In particular, the non-ossified inner wall of the acetabulum is an osteological correlate of the presence of internal ligaments in the hip joint (2015TsaiHP_HollidayCM). A.N. Kuznetsov, A.G. Sennikov (2000) distinguish three types of perforated acetabulums: those with small and large holes, as well as through marginal notches. According to the authors' observations, the non-perforated (closed) acetabulum is the original structure and is found only in primitive forms. Thus, the morphological series of progressive transformation from early thecodonts to birds begins with a non-perforated acetabulum. Subsequently, a small acetabular opening appears (the first type). It gradually increases in size (type II) and reaches its full development (type III), called "open acetabulum". The opening in the acetabulum is found in the following ancient species: Lagosuchus talampayensis (236-234 Ma), Stauricosaurus pricei (233.23 Ma), Herrerasaurus ischigualastensis (237-201 Ma), Terrestrisuchus gracilis (209-201 Ma), Orthosuchus strombergi (209-191 Ma), Tyrannosaurus rex (83.5-66.0 Ma), Ankylosaurus sp. (68-66 Ma) (2000KuznetsovAN_SennikovAG).

Skeleton of a tabrosaurus baby Tabrosaurus bataar (Upper Cretaceous, Mongolia, copy); exhibit of the Darwin Museum (Moscow), photo by the author.


It was established that fossil archosauromorphs had three ligaments in the hip joint: iliofemoral, ischiofemoral, and pubofemoral. The pubofemoral and ischiofemoral ligaments were connected distally, forming the ligamentum capitis femoris (LCF), attached to the fovea capitis. These two ventral ligaments formed an intracapsular double origin of the LCF in the case of a completely perforated acetabulum. In the imperforate acetabulum, the pubofemoral and ischiofemoral ligaments originated at the outer pubic and ischial margins of the acetabulum, respectively. In mature skeletons, the LCF formed a flat or concave fossa on the femoral head. In immature skeletons, the LCF articulated with the cartilage that formed the epiphysis, as in modern juvenile birds and crocodilians. For this reason, the femoral head fossa is not found in fossil bones. Among dinosaurs, distinctly concave or flat fovea capitis have rarely been observed in coelurosaurian theropods. In the saurischian lineage, the femoral head fossa varied from shallow in sauropodomorphs to flat in tyrannosaurids. Basal dinosauromorphs had an indistinct femoral head fossa, suggesting a significant thickness of hyaline cartilage. The evolution of the hip joint in basal dinosaurs is characterized by independent modifications of the two ventral capsular ligaments in the LCF. The pubofemoral and ischiofemoral ligaments in diapsids and sauropodomorphs had a common femoral attachment at the fossa of the femoral head. It was located entirely on the epiphyseal hyaline cartilage, so it did not leave a fossa on the subchondral surface. It is assumed that the LCF was relatively shorter in sauropodomorphs, more basal than mussaurids (2018TsaiHP_HollidayCM). In the illustrations to their work, the cited researchers provided examples of the presence of LCF features: a fossa on the femoral head and a hole in the floor of the acetabulum. Based on the above, we can confidently state that LCF was present in the following extinct species: Allosaurus fragilis (157-145 Ma), Anzu wyliei (67.2-66 Ma), Apatosaurus sp. (161-145 Ma), Asilisaurus kongwe (247-242 Ma), Coelophysis (237-183 Ma), Coelurus fragilis (157-145 Ma), Deinonychus antirrhopus (125-101 Ma), Diplodocus carnegii (157-145 Ma), Falcarius utahensis (139-134.6 Ma), Herrerasaurus ischigualastensis (237-201 Ma), Liliensternus liliensterni (228-201.3 Ma), Mussaurus (228-209 Ma), Piatnitzkysaurus floresi (180-168 Ma), Plateosaurus engelhardti (228-209 Ma), Tyrannosaurus rex (83.5-66.0 Ma).

View of the hip joint of Diplodocus carnegi Hatcher, Upper Jurassic (161.5-145.0 Ma); exposition of the Orlov Paleontological Museum (Moscow); photo by the author.


Signs of the presence of LCF are noted on the femur and in early dinosauromorphs - contemporaries of dinosaurs and other archosaurs of the late Triassic period (237-201.3±0.2 Ma): Lagerpeton chanarensis, Dromomeron romeri, Dromomeron gregorii. These creatures, unlike dinosaurs, had a groove for attaching the LCF in the form of a barely noticeable gap between the anteromedial and posteromedial tubercles on the head of the femur (2009NesbittSJ_RoweT).

The brief overview of LCF in extinct species indicates that this anatomical element was present in the hip joints of the earliest tetrapods. LCF continued to develop among archosaurs and dinosaurs. While in early tetrapod forms following Tiktaalik roseae, the LCF was located in the upper section of the hip joint, it "migrated" to the lower section after Eryops megacephalus. In dinosaurs, the LCF became significantly more complex, forming a structure of multiple ligaments that functioned together within a perforated acetabulum. 

References

Ezcurra MD, Scheyer TM, Butler RJ. The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLOS ONE. 2014;9(2)e89165. [journals.plos.org]

Chiari Y, Cahais V, Galtier N, Delsuc F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). Bmc Biology. 2012;10(1)1-15. [link.springer.com]

Nesbitt SJ, Sidor CA, Irmis RB, Angielczyk KD, Smith RM, Tsuji LA. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature. 2010;464(7285)95-8. [nature.com cienciaescolar.wordpress.com]

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Langer MC, Ramezani J, Da Rosa ÁAS. U-Pb age constraints on dinosaur rise from south Brazil. Gondwana Research. 2018;57:133-40. [sciencedirect.com]

Tsai HP, Holliday CM. Articular soft tissue anatomy of the archosaur hip joint: structural homology and functional implications. Journal of Morphology. 2015;276(6)601-30. [researchgate.netonlinelibrary.wiley.com]

Kuznetsov AN, Sennikov AG. On the function of a perforated acetabulum in archosaurs and birds. Paleontological Journal. 2000;34(4)439-48. [researchgate.net]

Tsai HP, Middleton KM, Hutchinson JR, Holliday CM. Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia. Journal of Vertebrate Paleontology. 2018;38(1)e1427593.  [tandfonline.com , researchonline.rvc.ac.uk]

Nesbitt SJ, Irmis RB, Parker WG, Smith ND, Turner AH, Rowe T. Hindlimb osteology and distribution of basal dinosauromorphs from the Late Triassic of North America. Journal of Vertebrate paleontology. 2009;29(2)498-516.  [tandfonline.com]


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, doctrine, animals, reptile, dinosauria


                                                                     

The original text in Russian is available at the link: Dinosauria

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

2018YoussefAO

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Youssef AO. Medial approach open reduction with ligamentum teres partial excision and plication for the management of congenital hip dislocation (2018). The article describes a method for transposition of the proximal attachment of the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2018YoussefAO . [ii]   Original text Abstract Because of the known tendency for early redislocation following open reduction, we developed surgical methods for shortening the ligamentum teres to improve immediate postoperative stability when performing medial approach open reduction (MAOR) for the management of developmental dysplasia of the hip. Between 2004 and 2014, 32 patients w...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

LCF in 2025 (December)

  LCF in 2025 ( December)   (Quotes from articles and books published in  December  2025 mentioning the ligamentum capitis femoris)   Sarassa, C., Aristizabal, S., Mejía, R., García, J. J., Quintero, D., & Herrera, A. M. (2025). Intraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance Stability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes. Journal of Pediatric Orthopaedics , 10-1097.   [i]      journals.lww.com   Kampouridis, P., Svorligkou, G., Spassov, N., & Böhme, M. (2025). Postcranial anatomy of the Late Miocene Eurasian hornless rhinocerotid Chilotherium. PLoS One , 20 (12), e0336590.     [ii]      journals.plos.org   Burdette, T. N., Hsiou, C. L., McDonough, S. P., Pell, S., Ayers, J., Divers, T. J., & Delvescovo, B. Sidewinder syndrome associated with complete rupture of the ligamentum capitis ossis femoris in a horse. Eq...

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

Full access to the PDF version of the book: HUMAN CHILDREN

  Full access to the PDF version of the book is now available: Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. (In Russian)].  Google Play  ,  Google Book , drive.google.com   ,   kruglayasvyazka.blogspot.com   [Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Эссе, снабженное ссылками на интерактивный материал. 2-е изд. перераб. и доп. Йоэнсуу : Издание Автора , 2025.]   Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition. He supplemented the co-author's family legends, retellings of halluc...

Key Role of the LCF

  In the experiments conducted on the pelvis-femur-muscle-ligaments model, we found that when the contralateral pelvic drop occurs, the ligament of the head of femur become maximally tense; simultaneously, there is relaxation and lengthening of the gluteus medius muscle; the pelvis spontaneously rotates towards the stance limb (forward), and the load on the hip joint decreases. Thanks to the functioning of the ligament of the head of femur the walking is smooth, rhythmic, and energy-efficient. Track Music:  Blue Dot Sessions , Vittoro (CC BY-NC 4.0 DEED / fragment)  "Take care of the ligament of the head of femur for yourself and your neighbor!" .                                                                       . keywords: ligamentum capitis femoris, ligament of head of femur, ligamentum te...

FACEBOOK

  FACEBOOK (publications in the group LIGAMENTUM CAPITIS FEMORIS and this social network) A FACEBOOK section has been created (About publications in this social network). FACEBOOK GROUP  On creating a group.   OLDEST SYNONYMS  Post in Facebook groups. Planar models of the hip joint   Post in Facebook groups. The loading acting onthe femoral head   Post in Facebook groups. Visualization of the LCF by the medial approach   Post in Facebook groups. A FORCE THAT HELPS ROTATE THE PELVIS   Post in Facebook groups.  FIRST EXPERIMENTS ON A MECHANICAL MODEL   Post in Facebook groups. HIP JOINT MODEL WITH LCF ANALOGUE   Post in Facebook groups. EXTERNAL LIGAMENTS & LCF   Post in Facebook groups.  BIOMECHANICS OF THE HIP JOINT WITHOUT LCF   Post in Facebook groups. F. Pauwels vis-à-vis S. Arkhipov ☺   Post in Facebook groups. TENSION OF THE LIGAMENTUM CAPITIS FEMORIS   Post in Facebook groups. Thompson's p...