Skip to main content

Human Children. Retelling of Chapter 4

 

Short retelling of chapter 3 of the essay: Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. Joensuu: Author's Edition, 2025. [In Russian] 

Chapter 3. THE DAWN OF SURGERY

The animal kingdom exhibits numerous forms of social support, many of which lay the groundwork for rudimentary medical practices. Insects like bees, fish such as cichlids, amphibians like bullfrogs, reptiles like crocodiles, and most birds and mammals demonstrate care for their offspring. Lions and wolves feed injured kin, while buffalo and flocking birds collectively defend against predators. Marine mammals assist struggling companions to the surface for air, and elephants help free trapped herd members from mud or aid them in standing. These behaviors hint at the origins of altruism, a trait that extends to early medical instincts.

Animals also engage in self-medication and basic healing. Birds employ various techniques to combat ectoparasites, while moths, ants, and fruit flies consume natural remedies for ailments. Chimpanzees incorporate medicinal plants into their diets, using them passively as healing foods or actively to treat injuries and infections. Dogs instinctively immobilize fractured limbs, lick wounds to clean them, and seek anti-parasitic plants when infested with worms. Grooming among related animals or mutual parasite removal across species serves as a form of treatment. A striking example involves a male Sumatran orangutan who applied sap and a paste made from Fibraurea tinctoria leaves to a facial wound, protecting it from insects while the lysozyme in his saliva and the plant’s compounds prevented infection and promoted healing. Chimpanzee communities lick each other’s wounds and place insects into injuries, possibly for therapeutic purposes. Capuchin monkeys rub odorous substances on one another, likely as a mutual anti-parasitic treatment. Ants clean and disinfect wounds with antimicrobial saliva, immobilize partially severed limbs, and even amputate damaged legs to reduce infection risks, a behavior that mirrors human altruism despite being driven by the need to remove dead tissue.

Humanity’s need for healthcare dates back to prehistory, with urgent surgery emerging as a critical skill. Early humans faced injuries from extreme temperatures, rugged terrain, falls from trees or cliffs, rockslides, predator attacks, and conflicts with rival groups. Burns, frostbite, cuts, muscle tears, fractures, and dislocations were common, yet not always fatal. Non-vital organs like eyes, ears, or extremities were frequently affected, prompting attempts at self-diagnosis and self-treatment for minor issues such as bruises, abrasions, small wounds, foreign bodies, sprains, ligament tears, subluxations, and hairline fractures. These efforts mark the roots of surgical specialties, including traumatology, burn care, ophthalmology, vascular surgery, maxillofacial surgery, abdominal surgery, thoracic surgery, neurosurgery, and otolaryngology.

The earliest recorded lethal injury among human ancestors is that of “Lucy,” a female Australopithecus afarensis who lived in Ethiopia around 3.2 million years ago. Her remains reveal death from multiple fractures, internal ruptures, and hemorrhages caused by a fall, likely from a tree. Such injuries were not uncommon among early hominins, whether fruit-gatherers or mountain-dwellers. For instance, two Australopithecus sediba individuals suffered fatal trauma after falling into a 5–10-meter-deep cave in South Africa’s Malapa site about 2 million years ago. Falls from heights exceeding 6.61 meters often cause severe head, chest, or abdominal injuries, offering little chance of survival for these early hominins.

Many injuries, however, were survivable, with some healing spontaneously. A healed heel bone fracture in an Australopithecus africanus, found in South Africa’s Sterkfontein Caves (dated 2.8–2.01 million years ago), suggests prolonged care by group members. The individual required immobilization for months, likely supported by a makeshift splint crafted from bark, vines, and sticks, and relied on others for food and mobility. This case highlights early social support and basic medical intervention, akin to modern orthopedic immobilization, though without advanced tools like plaster casts or surgical fixation.

Another example comes from Java, where a Homo erectus femur, dated 540,000–430,000 years ago, shows a massive ossification at the attachment site of the adductor brevis muscle. This likely resulted from a hematoma or chronic microtears, causing pain and limited mobility. The individual, unable to hunt or climb effectively, probably depended on group support and sought natural pain relief, as evidenced by the years-long growth of the osteophyte.

Homo heidelbergensis fossils also indicate care for the injured. A teenager from Italy’s Venosa-Notarchirico site (661,000–614,000 years ago) survived chronic femoral inflammation for over four months, implying community aid. In Spain’s Sima de los Huesos (530,000 years ago), a child’s skull with craniosynostosis and an elderly individual’s deformed pelvis and spine suggest they were cared for despite severe disabilities, as their conditions limited hunting or mobility.

Neanderthals (Homo neanderthalensis), thriving 500,000–30,000 years ago, exhibited profound care for vulnerable group members, including children with severe pathologies. Their medicine was sophisticated, reducing mortality and enhancing adaptability, which supported their dispersal and evolution. Most Neanderthals sustained serious injuries, with 79–94% of populations affected, 37–52% experiencing severe trauma, and 13–19% disabled before adulthood. At Iraq’s Shanidar Cave (55,000–45,000 years ago), fossils reveal extensive care. Shanidar 1, a male, survived multiple fractures, orbital damage, and a partial arm amputation—possibly intentional—for over a decade, reaching old age with debilitating conditions. Shanidar 3’s rib shows a wound from a thrown weapon, while Shanidar 4 and 5 healed from rib and cranial injuries, respectively.

A young Neanderthal from France’s La Roche à Pierrot (36,000 years ago) recovered from skull fractures without infection, despite likely brain trauma and symptoms like pain, nausea, and disorientation requiring weeks of care. This suggests Neanderthals developed surgical skills, at least for treating skin and bone injuries. Dental tartar analysis from Spain’s El Sidrón cave reveals Neanderthals consumed medicinal plants like yarrow and chamomile, as well as penicillin-producing fungi and poplar, which contains salicylic acid, a natural pain reliever. These plants offered anti-inflammatory, antiseptic, and sedative effects, likely used to treat wounds and reduce infections.

Neanderthals gained anatomical knowledge by butchering hunted animals, applying insights to human bodies. At Shanidar, an amputation may have been performed to remove a non-viable arm, possibly crushed by falling rock. The procedure likely involved cutting through dead tissue below a fracture to minimize pain and blood loss, using stone or bone tools and possibly plant-based analgesics. Post-operative care included cleaning the wound, applying raw meat or moss dressings, and using honey or herbs for healing, sustaining the patient for weeks.

Neanderthal medicine, possibly pioneered by a skilled individual at Shanidar, reflects advanced social and intellectual capacities. Their care for the injured, like Shanidar 1, who lived to 35–50 despite disabilities, underscores their humanism. Compared to early Homo sapiens, who averaged 30–39 years, Neanderthals’ medical practices extended lifespans, preserving valuable knowledge.

The earliest confirmed surgery on modern humans—an amputation of a man’s lower leg—occurred 31,000–30,000 years ago on Borneo’s Liang Tebo site. Other evidence includes trepanned skulls from Morocco (13,000–11,000 years ago), Iraq (8,920 years ago), and Ukraine (8,020–4,783 years ago), as well as dental drilling in Pakistan (9,000–7,500 years ago) and Italy (14,160–13,820 years ago). Amputations and mastoidectomies appear in Europe by 5,500–4,500 years ago, often with signs of healing, indicating surgical proficiency.

Surgery arose from anatomical knowledge gained through palpation, wound inspection, and rituals like cannibalism and mummification. In Spain’s Gran Dolina (780,000 years ago), Homo antecessor remains suggest marrow extraction, while cannibalism persisted in Europe (23,500–13,500 years ago) and China (8,000–4,500 years ago). Chile’s Chinchorro culture (8,475–1,720 years ago) mastered mummification, revealing detailed anatomical understanding, though its application to medicine is unclear.

Mesopotamian medicine, emerging in Sumer by 4,000 BCE, evolved through Akkad, Babylon, and Assyria. Military doctors likely served in garrisons, and hospitals existed by 2,000 BCE. Sumerian medicine, initially empirical, grew mystical by 1,700 BCE. The physician Lulu practiced in Ur around 2,700 BCE, and surgical tools like bronze knives were used by 2,500 BCE. Procedures included wound cleaning, cauterization, and abscess drainage, but Hammurabi’s Code (circa 1,760 BCE) imposed harsh penalties for surgical errors, stifling progress.

Egyptian medicine, dating to 3,300 BCE, blended science with religion. By 2,750 BCE, surgical procedures like bone setting and circumcision were depicted, with metastases treated by 2,400 BCE. Operations peaked in the Old Kingdom (2,613–2,181 BCE) but declined later due to religious taboos against dissection. Mummification provided anatomical insights, yet these were underutilized. Notable figures like Hesy Re, a dentist under Djoser (2,630–2,611 BCE), highlight Egypt’s specialized medical roles.

In the Levant, Israelite medicine lagged, dominated by priests who prioritized ritual over science. Surgeons performed circumcisions and basic procedures, but prohibitions on dissection limited advancements until the Hellenistic period.

Retelling done by Grok, an artificial intelligence developed by xAI. 

 

TABLE OF CONTENTS


                                                                    

Author:

Arkhipov S.V. – candidate of medical sciences, surgeon, traumatologist-orthopedist. 

Citation:

Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Эссе, снабженное ссылками на интерактивный материал. 2-е изд. перераб. и доп. Йоэнсуу: Издание Автора, 2025. 

Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. [Rus]

Purchase:

PDF version is available on GooglePlay & Google Books

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, history, first patient, injury, damage, Bible, Genesis

BLOG CONTENT

ANCIENT MENTIONS


Comments

Popular posts from this blog

Test catalog of the LCF pathology

  Test catalog of the ligamentum capitis femoris pathology By Sergey V. Arkhipov, MD, PhD     CONTENT [i]   Abstract [ii]   Introduction [iii]   Testing in the supine position [iv]   Testing in a standing position [v]   Gait study [vi]   References [vii]   Application [i]   Abstract A description of tests for the detection and differential diagnosis of ligamentum capitis femoris (LCF) pathology is presented. [ii]   Introduction One of the first studies devoted to the diagnosis of LCF injury demonstrated a variety of symptoms: groin pain, hip stiffness, sometimes long-standing minimal clinical findings, or signs similar to osteoarthritis (1997GrayA_VillarRN). More than a decade later, researchers concluded: "Unfortunately, there is no specific test for detecting LCF tears." The signs known at that time were nonspecific and were also observed in other intra-articular pathologies of the hip joint (2010CerezalL_Pérez-CarroL). The a...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

18th Century

  18th Century Catalog of archived publications of the specified period        1700-1709 1705PetitJL  The author writes about anatomy, role, and damage of the LCF in hip dislocation.  1705RuyschF  The author  describes the anatomical preparation containing the LCF, notes its areas of attachment, geometric and mechanical properties.  1706PolluxJ   The author refers to LCF as "νεῦρον" and also points out the synonym "ἰσχίον". 1709PetitJL   The author discusses the anatomy, role and damage of the LCF in hip dislocation, and also mentions the principle of treatment.  1710-1719 1715MunnicksJ   The author describes the attachment, shape, role of the LCF, and discusses subluxation of the hip. 1717HermannD  The author indicates the distal area of attachment of the LCF and uses a rare synonym. 1720-1729 1720RuyschF  The author draws attention to the well-developed blood supply of the acetabular fossa, as well as the ...

1836-1840PartridgeR

  «Prof. Partridge in his lectures on anatomy at King's College was accustomed to compare the Ligamentum Teres, in its function, to the leathern straps by which the body of a carriage is suspended on springs » ( 1874SavoryWS ). Perhaps Nikolai Pirogov listened to these lectures ( 1859PirogoffN ).   The analogy that Richard Partridge used could have arisen after reading the monograph Bell J. The Principles of Surgery (1801) . In it, the author depicted a cart and a pelvis resting on the head of one and two femurs. However, there is no mention of ligamentum capitis femoris (LCF) in the chart descriptions. References Savory WS. On the use of the ligamentum teres of the hip joint. J Anat Physiol. 1874;8(2)291-6.    [ ncbi.nlm.nih.gov  ,    archive.org ] Pirogoff N. Anatome topographica sectionibus per corpus humanum congelatum triplici directione ductus illustrate. Petropoli: Typis Jacobi Trey, 1859.   [ books.google  ,   archive.org ] ...

Key Role of the LCF

  In the experiments conducted on the pelvis-femur-muscle-ligaments model, we found that when the contralateral pelvic drop occurs, the ligament of the head of femur become maximally tense; simultaneously, there is relaxation and lengthening of the gluteus medius muscle; the pelvis spontaneously rotates towards the stance limb (forward), and the load on the hip joint decreases. Thanks to the functioning of the ligament of the head of femur the walking is smooth, rhythmic, and energy-efficient. Track Music:  Blue Dot Sessions , Vittoro (CC BY-NC 4.0 DEED / fragment)  "Take care of the ligament of the head of femur for yourself and your neighbor!" .                                                                       . keywords: ligamentum capitis femoris, ligament of head of femur, ligamentum te...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

MYTHS AND MISCONCEPTIONS

  MYTHS AND MISCONCEPTIONS ( Erroneous and folkloric beliefs, folk and traditional stories...)  LCF in English Bibles   The first written mention of the LCF in humans is found in the  ancient Hebrew book – Bereshit (Genesis). In English translations of the Bible, LCF is denoted by various terms, often not explicitly referring to the «ligament».  The Shortest Comments on Genesis, Chap. XXXII-XXXIII  In the selected excerpt, the symptoms, mechanism, and differential diagnostic test for the injury to LCF are provided, along with details about the circumstances, time, and place of the biblical trauma.  1609-1583bcProtoBereshit  Hypothesis: in the work of fiction, an unknown physician-encyclopedist for the first time pointed out damage to the LCF as a cause of gait disturbance.  922-722bcElohist  A variant of the oldest description of damage to the LCF and the cause of lameness in Hebrew, dating from 922-722 BC.  8cent.bcHomer   The...

2012KomistekRD

    Invention (Patent Application Publication): Komistek RD. Maintaining proper mechanics THA.  US20120221115A1  (2012).   US20120221115A1 US Inventor: Richard D. Komistek Current Assignee: DePuy Ireland ULC Worldwide applications 2011 US 2012 AU CN EP WO EP EP CN EP JP 2013 ZA 2015 US 2016 AU JP US 2018 US AU Application US13/034,226 events: 2011-02-24 Priority to US13/034,226 2011-02-24 Application filed by Individual 2012-08-30 Publication of US20120221115A1 2015-05-05 Publication of US9023112B2 2015-05-05 Application granted Status: Active 2031-02-24 Anticipated expiration   Maintaining proper mechanics THA Richard D. Komistek   Abstract A prosthetic hip joint comprising: (a) a femoral component including a femoral head; and, (b) an acetabular component including an acetabular cup and an acetabular cup insert, the acetabular cup insert sized to receive the femoral head, where the femoral head is sized to have a spherical center that matches a sph...

Congenital Hip Dislocation. Pathogenesis

  An original view on the pathogenesis of congenital hip dysplasia, congenital dislocation and subluxation of the hip. One example of the importance of ligamentum capitis femoris (LCF) and the influence of a mechanical factor on living systems is a group of diseases of the hip joint such as congenital hip dysplasia, congenital subluxation and congenital hip dislocation. The last of these pathological conditions is an extreme degree of severity of the previous two. Common to these pathological conditions is the presence of connective tissue dysplasia syndrome of varying severity. It is based on a decrease in the strength and elasticity of connective tissue structures. The consequence of this is that a standard load, for example, on ligaments causes their plastic deformation: thinning, elongation, and in some cases, rupture. This occurs due to both mechanical and biological processes (for more details, see the  Law of Bioinduction ). If, in connective tissue dysplasia syndr...