Skip to main content

1920FrazerJES

 

Fragments from the book Frazer JES. Anatomy of the Human Skeleton (1920). The author describes anatomy, embryology, development, and attachment of the ligamentum capitis femoris (LCF).

 

Fig. 104. — Outer view of the acetabular and ischio-pubic regions. A. is a region on the bone in front of the position of Quadratus femoris which is in relation with the tendon of Obturator externus and some loose fibro-fatty tissue that permits changes in place of the tendon with movement of the joint. B. is a sloping surface of bone which supports Pectineus but does not give origin to it; the surface extends out to the ilio-pectineal eminence where the fascia covering the Pectineus (pubic portion of fascia lata) reaches the bone at a. The front of the eminence is roughened by fibres belonging to the pubo-femoral group of ligaments. These are separated from the ilio-femoral set by an interval, apparent on the bone and marking the limit of the secondarily added pubic area of articular surface (see Fig. 106), where the synovial cavity is protruded as the sub-Psoas bursa ; this is seen in the smaller figure. The Psoas lies on the bursa and the surface C. D. is covered by Gluteus minimus, which arises above the dotted line ; below D. the muscle lies on the reflected head of the Rectus and the capsule of the joint. O. and J.C. are branches of the obturator and internal circumflex arteries anastomosing round Obturator externus and giving twigs through the cotyloid notch into the cotyloid fossa and so into the lig. teres, which is attached round the margins of the fossa and to the transverse ligament that extends between the lips of the notch. X. marks an ill-defined depression on the margin, which indicates the spot where the origin of Adductor magnus passes from the outer side of the pubic ramus to the lower aspect of the ischial tuberosity ; it therefore also marks the hinder limit of origin of Gracilis.

 

Quote p. 126-127

The articular surface of the acetabulum surrounds on three sides the non-articular cotyloid or acetabular fossa, which contains the fatty tissue of the “ Haversian gland,” and opens below at the cotyloid notch. The notch is bridged across by the transverse ligament, a tendinous structure continuous with the fibro-cartilaginous cotyloid ligament that is attached to the whole length of the edge of the brim : vessels and nerves pass through the notch, under the transverse ligament, to enter the ligamentum teres. The fibrous basis of the ligamentum teres is attached to the ischial and iliac parts of the cotyloid fossa and to the transverse ligament : its synovial covering is attached to the whole margin of the fossa and the whole length of the transverse ligament below, covering the fossa but lying free on its surface. The round ligament is the remains of the original ventral wall of the capsule (Fig. 106). In the human embryo the Ischium and Ilium alone are concerned in the articulation with the femur and the capsule is attached round their ventral margin : the pubic cartilage is extracapsular. As the pubis extends it is still separated by the cellular capsule from the femur. Later it breaks through this capsule and becomes articular, the synovial cavity extending over it from the Ilium. In this way the original attachment of the capsule is only left on the Ischium as the fibrous basis of the Ligamentum teres. In the adult the pubic articular surface is still more or less distinct from the iliac surface, and the same distinction is usually marked on the rim by a shallow notch ; here the communication may take place of the joint with the sub-psoas bursa, between the Iliac and pubic parts of the capsule. Above this notch is the large rough area for the A-shaped Ilio-femoral band, spreading on to the lower half or more of the anterior inferior spine, and below and internal to it is the area for the pubo-femoral band which extends inward along the front edge of the upper pubic ramus, overhanging the issuing obturator nerve.

The direct tendon of the Rectus femoris is attached to the upper part of the anterior inferior spine, so that it rests on the ilio-femoral band at its origin : outside this the line of its attachment passes downwards and backwards, to run into the cotyloid ligament and capsule at the top of the acetabulum, thus forming the reflected head. Observe that this must be under cover of Gluteus minimus, arising above the inferior curved line (see Fig. 105).

At the back of the acetabulum synovial membrane comes over the cotyloid ligament and touches the bone : this occurs from the transverse ligament below to the reflected tendon of Rectus above. In front the synovial membrane does not transgress the cotyloid ligament, but passes nearly directly from it to the strong capsule.

There is only a slight capsular attachment behind the acetabulum, for there are no true transverse fibres on the back of the joint, and only a few of the inner marginal fibres of the circular group run to the bone in this region : a group of these below reach the upper ramus of ischium as the “ ischio-capsular band.”

The posterior surface of the acetabular mass is covered by Pyriformis, and may give origin to some fibres of Gluteus minimus deep to this : the sciatic nerves, etc., and nerve to Quadratus femoris pass down on it. The thin floor of the acetabulum is occasionally, like the thinnest part of the iliac fossa, found to be perforated, and the hole is then closed by membrane.

 

Fig. 106. — To illustrate the formation of the ligamentum teres. In its early stage the ilium (il) and ischium (is) are alone concerned in the articulation, the synovial lining passing off them on to the capsule which is attached round their surfaces. The pubis is covered by these fibres and has no articular area. In the next stage the covering fibres are destroyed and the pubis has acquired an articular surface (p). This extends, and the front part of the original ischial capsule is caught, so to speak, between the extending surface and the ischium; these fibres persist and remain attached to the ischial region, but on their surface the synovial cavity has extended, as shown in the last diagram, and has joined the older cavity below as well, passing between the femur and the lower portion of the attached capsule. Thus a synovial funnel is formed, wider below where it includes the attachment of the fibres and narrowed at its femoral end, where it is fastened to the fovea.

 

Fig. 107. — Postero-external aspect of right os innominatum. The curved lines are somewhat diagrammatically drawn : for account see the text. Some of the fibres of the great sciatic ligament run on to the surface of the bone round x, and give origin here to part of G. maximus. The position of the sacrum and great ligament is indicated, with the origin of the muscle from it. A is the surface below the inferior curved line, covered by G. min. ; B, the area covered by Pyriformis, with the great sciatic nerve interposed ; C, covered by Obturator internus and Gemelli, which lie between the nerve and the bone, but have the' nerve to Quadratus between them and the bone. The muscles mentioned are practically in a continuous curved plane, so that the areas A, B, and C make a convex surface, continuously curved and smooth, round the acetabulum ; the muscles pass to the raised trochanter, so do not mould the bone by pressure. The lower aspect of the tuber ischii, below the facets for the hamstring muscles, shows two sloping surfaces, of which one looks outwards and gives origin to fibres of Adductor magnus (ischio-condylar portion), while the other looks inwards (D) and is covered by fibrofatty tissue which is continuous round the great sacro-sciatic ligament with that of the ischio-rectal fossa : in this tissue is a badly-defined bursa which lies under the tuberosity in sitting, the hamstrings and Adductor moving to the outer side of the prominence when the limbs are bent for that purpose.

 

Quote p. 142-143

 

The Ligamentum teres is a weak synovial attachment of the head of the femur to the cotyloid fossa and transverse ligament: it is (p. 127) the remains of the primitive capsule isolated by the secondary taking up of the pubic surface into the joint, and has little mechanical value, but carries some small vessels and nerves to the head of the bone.

 

Fig. 118.Upper end of right femur. The epiphysial line for the great trochanter is marked in green round its base. The “retinacula of Weitbrecht,” fibres running back toward the head under the synovial membrane, are shown only where they are congregated into their three main groups; they are derived from the transverse capsular fibres, and the upper one obtains many fibres from Pyriformis (see Fig. 117). 1. Anterior aspect. Observe that the Gluteus minimus is attached only to the outer ridge of the trochanter, but its tendon is continuous below with an aponeurotic sheet, the ilio-trochanteric band, which covers the bursa in front and reaches the bone internal to it. The upper part of the origin of Crureus is mainly tendinous. The extension of the cartilage of the head on to the neck is shown at x ; this lies under the ilio-femoral band or, if the opening for the sub-Psoas bursa is large, under the tendon of the Psoas. 2. From the outer side. The oblique insertion of Gluteus medius is continuous below and in front with that of Gluteus minimus, and frequently with that of Pyriformis above and behind ; it divides this aspect of the trochanter into two areas, one, C, in front and above, under cover of medius and therefore bevelled off in the direction of that muscle, the other. A, below and behind, covered by Gluteus maximus and therefore moulded by that muscle so that it is more vertically directed and curved from before backwards. The surface C carries a bursa? but A has only occasionally an extension of the bursa situated below in relation with it. B, surface covered by Vastus externus and more or less flattened by it. Crureus fuses with V. externus at a lower level. 3. Posterior aspect. D, surface covered by Quadratus femoris; deep to this muscle the Obturator externus lies against the bone, moulding the back and lower part of the neck in the area F as it passes to the digital fossa. 4. From the inner side. Observe the pointed area between the spiral line and pectineal line which is occupied by iliacus. E, inner surface, covered by Vastus internus but not affording origin to it; the Crureus does not transgress the inner border.

 


External links

Frazer JES. Anatomy of the Human Skeleton. 2nd ed., London: J. & A. Churchill, 1920. archive.org , wellcomecollection.org


Authors & Affiliations

John Ernest Sullivan Frazer (1870-1946) was a British surgeon, anatomist, and professor of anatomy at the University of London. livesonline.rcseng.ac.uk


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, embryology, development, attachment


                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7




Comments

Popular posts from this blog

Test catalog of the LCF pathology

  Test catalog of the ligamentum capitis femoris pathology By Sergey V. Arkhipov, MD, PhD     CONTENT [i]   Abstract [ii]   Introduction [iii]   Testing in the supine position [iv]   Testing in a standing position [v]   Gait study [vi]   References [vii]   Application [i]   Abstract A description of tests for the detection and differential diagnosis of ligamentum capitis femoris (LCF) pathology is presented. [ii]   Introduction One of the first studies devoted to the diagnosis of LCF injury demonstrated a variety of symptoms: groin pain, hip stiffness, sometimes long-standing minimal clinical findings, or signs similar to osteoarthritis (1997GrayA_VillarRN). More than a decade later, researchers concluded: "Unfortunately, there is no specific test for detecting LCF tears." The signs known at that time were nonspecific and were also observed in other intra-articular pathologies of the hip joint (2010CerezalL_Pérez-CarroL). The a...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

1836-1840PartridgeR

  «Prof. Partridge in his lectures on anatomy at King's College was accustomed to compare the Ligamentum Teres, in its function, to the leathern straps by which the body of a carriage is suspended on springs » ( 1874SavoryWS ). Perhaps Nikolai Pirogov listened to these lectures ( 1859PirogoffN ).   The analogy that Richard Partridge used could have arisen after reading the monograph Bell J. The Principles of Surgery (1801) . In it, the author depicted a cart and a pelvis resting on the head of one and two femurs. However, there is no mention of ligamentum capitis femoris (LCF) in the chart descriptions. References Savory WS. On the use of the ligamentum teres of the hip joint. J Anat Physiol. 1874;8(2)291-6.    [ ncbi.nlm.nih.gov  ,    archive.org ] Pirogoff N. Anatome topographica sectionibus per corpus humanum congelatum triplici directione ductus illustrate. Petropoli: Typis Jacobi Trey, 1859.   [ books.google  ,   archive.org ] ...

2025SrinivasanS_SakthivelS

The article by Srinivasan S, Verma S, Sakthivel S. Macromorphological Profile of Ligamentum Teres Femoris in Human Cadavers–A Descriptive Study (2025) is devoted to the morphology of ligamentum capitis femoris (LCF) in the Indian population. The text in Russian is available at the following link: 2025SrinivasanS_SakthivelS . Macromorphological Profile of Ligamentum Teres Femoris in Human Cadavers–A Descriptive Study By  Srinivasan S, Verma S, Sakthivel S.   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract Introduction: The ligamentum teres femoris (LTF) is an intra-articular ligament extending from fossa of acetabulum to the head of femur and is triangular or pyramidal in shape. Recent literature supports its role as a secondary stabilizer of hip and increasing evidence supports reconstructive surgery following tear...

18th Century

  18th Century Catalog of archived publications of the specified period        1700-1709 1705PetitJL  The author writes about anatomy, role, and damage of the LCF in hip dislocation.  1705RuyschF  The author  describes the anatomical preparation containing the LCF, notes its areas of attachment, geometric and mechanical properties.  1706PolluxJ   The author refers to LCF as "νεῦρον" and also points out the synonym "ἰσχίον". 1709PetitJL   The author discusses the anatomy, role and damage of the LCF in hip dislocation, and also mentions the principle of treatment.  1710-1719 1715MunnicksJ   The author describes the attachment, shape, role of the LCF, and discusses subluxation of the hip. 1717HermannD  The author indicates the distal area of attachment of the LCF and uses a rare synonym. 1720-1729 1720RuyschF  The author draws attention to the well-developed blood supply of the acetabular fossa, as well as the ...

1996ChenHH_LeeMC

  Abstract of the article Chen HH, Li AF, Li KC, Wu JJ, Chen TS, Lee MC. Adaptations of ligamentum teres in ischemic necrosis of human femoral head (1996). The authors investigate the strength of the ligamentum capitis femoris (LCF)  in avascular necrosis and femoral neck fracture.  The text in Russian is available at the following link: 1996ChenHH_LeeMC . Annotation   Little is known about the biomechanical properties of human ligamentum teres. To more fully understand the ligamentum teres, its dimensions and mechanical properties were measured in 22 cases of acute fracture of the femoral neck and 21 cases of ischemic necrosis of the femoral head. The specimens first were preconditioned and then loaded to failure with a testing machine at a fast strain rate of 100% s(-1). The ischemic necrosis group had a significantly larger volume (3.09 +/- 1.81 ml versus 1.30 +/- 0.62 ml) and cross section area (65.3 +/- 59.1 mm2 versus 30.6 +/- 27.2 mm2) than did the acute f...

2024GillHS

  Content [i]   Annotation [ii]   Original text [iii]   Illustrations & References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Article by Gill HS. CORR Insights: How Strong Is the Ligamentum Teres of the Hip? A Biomechanical Analysis (2024). To clarify the role of ligamentum capitis femoris (LCF), the author recommends a combination of experimental studies with computer modeling. The text in Russian is available at the following link: 2024GillHS [ii]   Original text Where Are We Now? Hip preservation surgery has seen a rapid increase in usage over the last 15 years [10], in large part driven by the groundbreaking work of Ganz et al. [5], who described the association between femoroacetabular impingement and hip osteoarthritis and who also developed effective methods of surgical dislocation that maintain the blood supply to the femoral head [4]. Arthroscopic met...

2025ArkhipovSV. Physicians Who Became Gods

   The English translation of the artistic etude by Sergei Arkhipov « Врачи , ставшие Богами : Рационально - критическое богословие » . The etude that mentions LCF is based on the Prologue and Epilogue of the essay: Архипов СВ. Дети человеческие: истоки библейских преданий в обозрении врача . Йоэнсуу: Издание Автора, 2025. [Arkhipov SV. Human Children: The Origins of Biblical Legends from a Physician's Perspective].  Physician s Who Became Gods: Rational-Critical Theology By Sergey V. Arkhipov     CONTENT The Prolegomena The Scene The play “ Immanuel ” The Divertissement The Prelude The Creation and Birth The Ministry and Teaching The Coda The Reflections a fter Word and Sound Application The Prolegomena Is it ethical to offer children, the sick, and the less educated a literal or supernatural interpretation of Genesis and the Gospels when a reasonable explanation exists? I propose a rational, interdisciplinary reading of the Scriptures from the perspective...

2024StetzelbergerVM_TannastM

   Content [i]   Summary [ii]   Annotation [iii]   Illustrations and References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Summary Abstract of the article Stetzelberger VM, Nishimura H, Hollenbeck JF, Garcia A, Brown JR, Schwab JM, Philippon JM, Tannast M (2024). The authors found low ligamentum capitis femoris (LCF) strength in patients with femoroacetabular impingement. A Russian translation is available at this link: 2024StetzelbergerVM_TannastM . [ii]   Annotation Background:  Intraarticular hip pain represents a substantial clinical challenge, with recent studies implicating lesions in the ligamentum teres as potential contributors. Even more so, damage to the ligamentum teres is particularly prevalent among young patients undergoing joint-preserving interventions. Although several studies have investigated the biomechanical attributes of the ligamentum teres,...