Skip to main content

1916WalmsleyT

  

Article by Walmsley T. A note on the retinacula of Weitbrecht (1916). The author discusses the embryonic development and relationships of the ligamentum capitis femoris (LCF) in humans and animals. 

 

A NOTE ON THE RETINACULA OF WEITBRECHT.

By THOMAS WALMSLEY, M.B., Senior Demonstrator in Anatomy, University of Glasgow.

 

The synovial membrane of the hip-joint is in extent and attachment similar to that of other diarthroses, but the retinacula of Weitbrecht (or ligaments of Stanley) lend to it a special interest. These retinacula are readily recognized on the interior of the capsule as flattened bands passing inwards towards the margin of the head of the femur from the attachment of the peripheral capsule. The following description of their constitution may be selected as expressive of current opinion. The retinacula are arranged in three groups, superior, middle, and inferior: structurally, they are synovial covered capsular reflections: morphologically, the inferior set is said to represent the persistent retinaculunm of the invaginated ligamentum teres (Keith), while the superior set has been described by Frazer as being entirely due to medially directed reflections of the tendon of the M. pyriformis: functionally, they are developed either to prevent intracapsular fracture of the neck of the femur in the infant (Fawcett) or, if that has already occurred, as a means of fixation of the fragments (Hepburn in Cunningham). These descriptions form the bases of this study of these bands.

The blood-vessels which perforate the capsular attachment and pass along the superficies of the neck of the femur to enter the foramina towards the articular margin of the head may be shown by X-ray photographs of mercury-injected specimens to terminate in the metaphysis of the neck and the epiphysis of the head. From the points where they perforate the capsule these vessels derive and carry inwards indefinite fibrous prolongations of the capsule wall which are covered over or are completely invested by reflections of synovial membrane. These elements constitute the retinacula of Weitbrecht. The fibrous prolongations terminate by fusion with the superficial structures of the neck at varying and indefinite distances from their origin, while the synovial reflections pass onwards to the cartilaginous margin of the head where they form the coverings of the " synovial pads of fat." In Haver's definition the term synovial pad is applied to a mass of vascularised fat invested by synovial membrane locally modified for the production of synovia. In addition, however, to the glandular function of the covering membrane, these masses act as movable pads, which are drawn into and occupy the more obvious peripheral spaces which would otherwise occur between the articular surfaces of organic joints during their action.

This separation of the articular surfaces, as I shall show in a forthcoming publication, is peculiar to organic joints, and to fill the potential intervals movable and yielding structures are required: and such are found in two modifications (Goodsir). If space alone is to be occupied synovial pads fulfil the requirements, and associated with each pad is a synovial mechanism for the regulation of its movements; but if resistance to pressure is an additional function fibrocartilaginous tissue is necessary.

In connection with the hip-joint there are three synovial pads: two are in relation to the articular margin of the head of the femur, and the third is situated in the acetabular fossa. The femoral pads are placed in the superior and inferior concavities of the articular margin of the head at the medial ends of the synovial retinacula. Both are freely movable on the underlying tissues of the neck, so that on semi-flexion of the limb, when the whole peripheral capsule, and therefore the synovial retinacula, are relaxed, these pads react to the suction action generated in the joint within the cotyloid ligament, and move so that the inferior comes to lie on the pubic portion of the acetabular margin and occupies an interval which would otherwise be created between that part of the acetabular surface and the femoral neck adjacent to the receding margin of the head. When the inferior retinacula are stretched, as occurs in the tightening of the capsule in extension or hyperflexion, they pull on the synovial pad and flattening it on the neck of the bone remove it from any possible intervention between the articular surface of the acetabulum and the advancing margin of the femoral head. These pads, then, are placed so as to equalise the uneven articular margin of the head of the femur in its varying position on the uniform margin of the acetabulum, and their synovial mechanisms are the retinacula of Weitbrecht. The acetabular pad is placed in the acetabular fossa superficial to its thin easily detached periosteum, to which it is movably united by weak ligamentous connections and fine vascular channels. The amount of the mass varies in individual cases and may here and there seem to be deficient, especially in the upper part of the fossa, but normally is of volume more than sufficient to fill the acetabular fossa, the excess being necessary in its function. The movements of this pad are such that on semi-flexion of the limb it passes into the acetabulum under the action of the suction force within the joint and controlled by the synovial covering of the lig. teres, and abolishes the interval which would otherwise be produced by the apical displacement of the head of the femur: and this movement is visible from the peripheral aspect of the joint as an "indrawing" of the structures superficial to the "acetabular gap." On extension of the limb the excessive portion of the pad is visibly protruded through the acetabular gap, and reaches that position not by an expulsive action of the advancing apical part of the femoral head but by being actively withdrawn by its peculiar synovial retinaculum attached to the superficial part of the lig. teres.

The suction action generated within the joint is entirely within the cotyloid ligament, and is obtained because of the atmospheric vacuum within that part of the articulation in which the joint surfaces undergo separation from one another. Between the articular surfaces, however, there will be at no time any interval unoccupied by synovial fluid or unobliterated by the movable walls of the containing cavity or of the contained femoral head, since the induction of a vacuum interval by separation of the surfaces would determine the onset of a force active in the re-establishment of surface contact, but detrimental, since in direct opposition, to the working of the contracting muscles. In the lateral movement of the head of the femur which accompanies its rotation to semi-flexion from the extended position the apical interval is avoided by the movement of the acetabular pad, which falls into the acetabulum and diminishes its cubic content. The cotyloid ligament, on the other hand, is expanded by the lateral movement of the head and thus the volume of the cavity is increased, but the movements of the femoral pads avoid the appearance of any marginal interval.

We have determined these facts in the adult human subject, and after consideration of the retinacula in some of the domestic carnivore, (1) certain of the ungulata, (l) and in one of the apes, feel that the following conclusions are justified: That the incidence of the retinacula is coincident with the blood-vessels of the epiphysis of the head and metaphysis of the neck as determined by dissection of the recent specimen or by analysis of the vascular foramina in the macerated bone: that they are reflections of the synovial membrane over the fibrous sheaths of these vessels, and the sheaths are indefinite prolongations of the capsule wall: that they serve as an active mechanism in the function of the femoral synovial pads. Further, we would believe that none of them possesses any peculiar morphological significance, but that they are developed and are retained permanently where they will be free from direct capsular pressure and are associated with the blood-vessels and synovial pads purposively and precisely in those situations.

 

(1) In these groups there is no superior retinaculum, nor superior femoral synovial pad, owing to the shape and articular incidence of that area of the femoral head.

 

In denying the morphological significance of the inferior retinaculum it seems reasonable to conclude that the view advanced by Keith is in itself insufficient to account for the persistent retention of a structure, of importance only at so remote a stage in phylogeny: nor is it in agreement with the facts of comparative embryology. In the human embryo the lig. teres is completely free at the first appearance of the joint cleft: in the embryo tapir a synovial mesentery binds the ligament to the capsule wall, while in the adult the ligament is invested as in the human subject (Welcher): in the walrus, where the limb pertains to the reptilian type, the ligament arises within the joint cavity permanently enfolded in a synovial reflection from the capsule (Moser). We believe these facts to indicate that the inferior femoral retinaculum does not represent, in whole at least, the persistent remains of the mesentery of the invaginated lig. teres, but that this mesentery would, and possibly does occur, as the retinaculuin of the acetabular pad of fat (also described by Weitbrecht) which arises in relation to the extra-acetabular part of the lig. teres and invests the blood-vessels passing through the acetabular gap to the acetabular synovial pad. As regards the superior group being the direct prolongation of the tendon of the M. pyriformis, we believe this to be the seeming result of the fusion of that tendinous expansion with the capsule, and that it is from the capsule that the fibrous elements of the retinaculum are derived. In the majority of mammalian groups (of all we have examined) the superior retinaculum is absent, and this we have associated with the shape of the articular femoral head.

In the infant the retinacula are of relatively larger size than in the adult, and we would relate the fact to the relatively larger blood-vessels which pass to the head at that period.

 

External links

Walmsley T. A note on the retinacula of Weitbrecht. Journal of Anatomy. 1916;51(Pt 1)61-4. ncbi.nlm.nih.gov


Authors & Affiliations

Thomas Walmsley (1889-1951) was a Scottish anatomist, Professor of Anatomy at Queen's University, Belfast. wikipedia.org


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, embryology, development, animals




NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

                                                                   

Comments

Popular posts from this blog

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

Test catalog of the LCF pathology

  Test catalog of the ligamentum capitis femoris pathology By Sergey V. Arkhipov, MD, PhD     CONTENT [i]   Abstract [ii]   Introduction [iii]   Testing in the supine position [iv]   Testing in a standing position [v]   Gait study [vi]   References [vii]   Application [i]   Abstract A description of tests for the detection and differential diagnosis of ligamentum capitis femoris (LCF) pathology is presented. [ii]   Introduction One of the first studies devoted to the diagnosis of LCF injury demonstrated a variety of symptoms: groin pain, hip stiffness, sometimes long-standing minimal clinical findings, or signs similar to osteoarthritis (1997GrayA_VillarRN). More than a decade later, researchers concluded: "Unfortunately, there is no specific test for detecting LCF tears." The signs known at that time were nonspecific and were also observed in other intra-articular pathologies of the hip joint (2010CerezalL_Pérez-CarroL). The a...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

2025SrinivasanS_SakthivelS

The article by Srinivasan S, Verma S, Sakthivel S. Macromorphological Profile of Ligamentum Teres Femoris in Human Cadavers–A Descriptive Study (2025) is devoted to the morphology of ligamentum capitis femoris (LCF) in the Indian population. The text in Russian is available at the following link: 2025SrinivasanS_SakthivelS . Macromorphological Profile of Ligamentum Teres Femoris in Human Cadavers–A Descriptive Study By  Srinivasan S, Verma S, Sakthivel S.   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract Introduction: The ligamentum teres femoris (LTF) is an intra-articular ligament extending from fossa of acetabulum to the head of femur and is triangular or pyramidal in shape. Recent literature supports its role as a secondary stabilizer of hip and increasing evidence supports reconstructive surgery following tear...

2012KomistekRD

    Invention (Patent Application Publication): Komistek RD. Maintaining proper mechanics THA.  US20120221115A1  (2012).   US20120221115A1 US Inventor: Richard D. Komistek Current Assignee: DePuy Ireland ULC Worldwide applications 2011 US 2012 AU CN EP WO EP EP CN EP JP 2013 ZA 2015 US 2016 AU JP US 2018 US AU Application US13/034,226 events: 2011-02-24 Priority to US13/034,226 2011-02-24 Application filed by Individual 2012-08-30 Publication of US20120221115A1 2015-05-05 Publication of US9023112B2 2015-05-05 Application granted Status: Active 2031-02-24 Anticipated expiration   Maintaining proper mechanics THA Richard D. Komistek   Abstract A prosthetic hip joint comprising: (a) a femoral component including a femoral head; and, (b) an acetabular component including an acetabular cup and an acetabular cup insert, the acetabular cup insert sized to receive the femoral head, where the femoral head is sized to have a spherical center that matches a sph...

2011LinaresMA

    Invention (Patent Application Publication):  Linares MA. Hip socket with assembleable male ball shape having integrally formed ligament and female receiver and installation kit.  WO2011081670A1  (2011). WO2011081670A1 US Inventor: Miguel Linares Worldwide applications 2010 US WO 2011 US Application PCT/US2010/020343 events: 2009-12-30 Priority claimed from US12/649,456 2010-01-07 Application filed by Linares Medical Devices, Llc 2011-07-07 Publication of WO2011081670A1   Hip socket with assembleable male ball shape having integrally formed ligament and female receiver and installation kit Miguel Linares   Abstract A hip implant assembly including a spherical shaped ball and an elongated stem. An annular defining rim separates the ball from the stem and abuts, in a maximum inserting condition, over an exterior reconditioned surface of the femur and upon inserting the stem within an interior passageway formed within the femur. A cup shaped support se...

1848HarrisonR

   Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments from the book: Harrison R. Textbook of Practical Anatomy (1848). The author discusses the anatomy, topography, and role of the ligamentum capitis femoris (LCF), noting its length as 1.5 inches, or approximately 38 mm. The text in Russian is available at the following link: 1848HarrisonR . [ii]   Original text Quote pp. 654-655.   Mr. Flood (Lancet, 1829-30, page 672) has described an intarticular ligament, which, he says, "may be easily exposed by cutting through the inferior part of the capsule transversely, and throwing back the arm over the head. You thus expose the interior of the upper part of the capsule, also the biceps tendon. Parallel to the inner edge of the latter this ligament may be felt, and exposed by a lit...

2015HainingZ

    Invention (Patent): Haining Z . Artificial total hip joint prosthesis with axially restrained anti-dislocation structure.  CN105105873A  (2015). Machine translation from Chinese.   CN105105873A China Inventor: Zhang Haining Current Assignee: Shanghai longhui Medical Technology Co., Ltd. Worldwide applications 2015 CN Application CN201510360141.9A events: 2015-08-07 Application filed by Affiliated Hospital of University of Qingdao 2015-08-07 Priority to CN201510360141.9A 2015-12-02 Publication of CN105105873A 2017-06-20 Application granted 2017-06-20 Publication of CN105105873B Status: Active 2035-08-07 Anticipated expiration   Artificial total hip joint prosthesis with axially restrained anti-dislocation structure Zhang Haining   Abstract The invention provides a kind of artificial full-hip joint prosthese with axially limitation anticreep bit architecture, including acetabular component, liner, femoral head prosthesis, liner is located in the g...

2012MansmannKA

  Invention (Patent Application Publication): Mansmann KA. Tendon-sparing implants for arthroscopic replacement of hip cartilage. WO2012162571A1 (2012).  The original text of the document contained defects.   WO2012162571A1S US Inventor: Kevin A. Mansmann Worldwide applications 2012 WO Application PCT/US2012/039481 events: 2012-05-24 Application filed by Mansmann Kevin A 2012-11-29 Publication of WO2012162571A1   Tendon-sparing implants for arthroscopic replacement of hip cartilage Kevin A. Mansmann   Abstract Surgical implant devices are disclosed which will allow completely arthroscopic resurfacing of the acetabular socket, and the femoral head, in hip joints, in both humans, and in animals such as dogs. Such devices, made of flexible polymers with smooth articulating surfaces and porous anchoring surfaces, can be provided with centered openings, to allow a surgeon to spare the major ligament (the ligamentum teres) which connects the femoral head to the pelv...