Skip to main content

1916WalmsleyT

  

Article by Walmsley T. A note on the retinacula of Weitbrecht (1916). The author discusses the embryonic development and relationships of the ligamentum capitis femoris (LCF) in humans and animals. 

 

A NOTE ON THE RETINACULA OF WEITBRECHT.

By THOMAS WALMSLEY, M.B., Senior Demonstrator in Anatomy, University of Glasgow.

 

The synovial membrane of the hip-joint is in extent and attachment similar to that of other diarthroses, but the retinacula of Weitbrecht (or ligaments of Stanley) lend to it a special interest. These retinacula are readily recognized on the interior of the capsule as flattened bands passing inwards towards the margin of the head of the femur from the attachment of the peripheral capsule. The following description of their constitution may be selected as expressive of current opinion. The retinacula are arranged in three groups, superior, middle, and inferior: structurally, they are synovial covered capsular reflections: morphologically, the inferior set is said to represent the persistent retinaculunm of the invaginated ligamentum teres (Keith), while the superior set has been described by Frazer as being entirely due to medially directed reflections of the tendon of the M. pyriformis: functionally, they are developed either to prevent intracapsular fracture of the neck of the femur in the infant (Fawcett) or, if that has already occurred, as a means of fixation of the fragments (Hepburn in Cunningham). These descriptions form the bases of this study of these bands.

The blood-vessels which perforate the capsular attachment and pass along the superficies of the neck of the femur to enter the foramina towards the articular margin of the head may be shown by X-ray photographs of mercury-injected specimens to terminate in the metaphysis of the neck and the epiphysis of the head. From the points where they perforate the capsule these vessels derive and carry inwards indefinite fibrous prolongations of the capsule wall which are covered over or are completely invested by reflections of synovial membrane. These elements constitute the retinacula of Weitbrecht. The fibrous prolongations terminate by fusion with the superficial structures of the neck at varying and indefinite distances from their origin, while the synovial reflections pass onwards to the cartilaginous margin of the head where they form the coverings of the " synovial pads of fat." In Haver's definition the term synovial pad is applied to a mass of vascularised fat invested by synovial membrane locally modified for the production of synovia. In addition, however, to the glandular function of the covering membrane, these masses act as movable pads, which are drawn into and occupy the more obvious peripheral spaces which would otherwise occur between the articular surfaces of organic joints during their action.

This separation of the articular surfaces, as I shall show in a forthcoming publication, is peculiar to organic joints, and to fill the potential intervals movable and yielding structures are required: and such are found in two modifications (Goodsir). If space alone is to be occupied synovial pads fulfil the requirements, and associated with each pad is a synovial mechanism for the regulation of its movements; but if resistance to pressure is an additional function fibrocartilaginous tissue is necessary.

In connection with the hip-joint there are three synovial pads: two are in relation to the articular margin of the head of the femur, and the third is situated in the acetabular fossa. The femoral pads are placed in the superior and inferior concavities of the articular margin of the head at the medial ends of the synovial retinacula. Both are freely movable on the underlying tissues of the neck, so that on semi-flexion of the limb, when the whole peripheral capsule, and therefore the synovial retinacula, are relaxed, these pads react to the suction action generated in the joint within the cotyloid ligament, and move so that the inferior comes to lie on the pubic portion of the acetabular margin and occupies an interval which would otherwise be created between that part of the acetabular surface and the femoral neck adjacent to the receding margin of the head. When the inferior retinacula are stretched, as occurs in the tightening of the capsule in extension or hyperflexion, they pull on the synovial pad and flattening it on the neck of the bone remove it from any possible intervention between the articular surface of the acetabulum and the advancing margin of the femoral head. These pads, then, are placed so as to equalise the uneven articular margin of the head of the femur in its varying position on the uniform margin of the acetabulum, and their synovial mechanisms are the retinacula of Weitbrecht. The acetabular pad is placed in the acetabular fossa superficial to its thin easily detached periosteum, to which it is movably united by weak ligamentous connections and fine vascular channels. The amount of the mass varies in individual cases and may here and there seem to be deficient, especially in the upper part of the fossa, but normally is of volume more than sufficient to fill the acetabular fossa, the excess being necessary in its function. The movements of this pad are such that on semi-flexion of the limb it passes into the acetabulum under the action of the suction force within the joint and controlled by the synovial covering of the lig. teres, and abolishes the interval which would otherwise be produced by the apical displacement of the head of the femur: and this movement is visible from the peripheral aspect of the joint as an "indrawing" of the structures superficial to the "acetabular gap." On extension of the limb the excessive portion of the pad is visibly protruded through the acetabular gap, and reaches that position not by an expulsive action of the advancing apical part of the femoral head but by being actively withdrawn by its peculiar synovial retinaculum attached to the superficial part of the lig. teres.

The suction action generated within the joint is entirely within the cotyloid ligament, and is obtained because of the atmospheric vacuum within that part of the articulation in which the joint surfaces undergo separation from one another. Between the articular surfaces, however, there will be at no time any interval unoccupied by synovial fluid or unobliterated by the movable walls of the containing cavity or of the contained femoral head, since the induction of a vacuum interval by separation of the surfaces would determine the onset of a force active in the re-establishment of surface contact, but detrimental, since in direct opposition, to the working of the contracting muscles. In the lateral movement of the head of the femur which accompanies its rotation to semi-flexion from the extended position the apical interval is avoided by the movement of the acetabular pad, which falls into the acetabulum and diminishes its cubic content. The cotyloid ligament, on the other hand, is expanded by the lateral movement of the head and thus the volume of the cavity is increased, but the movements of the femoral pads avoid the appearance of any marginal interval.

We have determined these facts in the adult human subject, and after consideration of the retinacula in some of the domestic carnivore, (1) certain of the ungulata, (l) and in one of the apes, feel that the following conclusions are justified: That the incidence of the retinacula is coincident with the blood-vessels of the epiphysis of the head and metaphysis of the neck as determined by dissection of the recent specimen or by analysis of the vascular foramina in the macerated bone: that they are reflections of the synovial membrane over the fibrous sheaths of these vessels, and the sheaths are indefinite prolongations of the capsule wall: that they serve as an active mechanism in the function of the femoral synovial pads. Further, we would believe that none of them possesses any peculiar morphological significance, but that they are developed and are retained permanently where they will be free from direct capsular pressure and are associated with the blood-vessels and synovial pads purposively and precisely in those situations.

 

(1) In these groups there is no superior retinaculum, nor superior femoral synovial pad, owing to the shape and articular incidence of that area of the femoral head.

 

In denying the morphological significance of the inferior retinaculum it seems reasonable to conclude that the view advanced by Keith is in itself insufficient to account for the persistent retention of a structure, of importance only at so remote a stage in phylogeny: nor is it in agreement with the facts of comparative embryology. In the human embryo the lig. teres is completely free at the first appearance of the joint cleft: in the embryo tapir a synovial mesentery binds the ligament to the capsule wall, while in the adult the ligament is invested as in the human subject (Welcher): in the walrus, where the limb pertains to the reptilian type, the ligament arises within the joint cavity permanently enfolded in a synovial reflection from the capsule (Moser). We believe these facts to indicate that the inferior femoral retinaculum does not represent, in whole at least, the persistent remains of the mesentery of the invaginated lig. teres, but that this mesentery would, and possibly does occur, as the retinaculuin of the acetabular pad of fat (also described by Weitbrecht) which arises in relation to the extra-acetabular part of the lig. teres and invests the blood-vessels passing through the acetabular gap to the acetabular synovial pad. As regards the superior group being the direct prolongation of the tendon of the M. pyriformis, we believe this to be the seeming result of the fusion of that tendinous expansion with the capsule, and that it is from the capsule that the fibrous elements of the retinaculum are derived. In the majority of mammalian groups (of all we have examined) the superior retinaculum is absent, and this we have associated with the shape of the articular femoral head.

In the infant the retinacula are of relatively larger size than in the adult, and we would relate the fact to the relatively larger blood-vessels which pass to the head at that period.

 

External links

Walmsley T. A note on the retinacula of Weitbrecht. Journal of Anatomy. 1916;51(Pt 1)61-4. ncbi.nlm.nih.gov


Authors & Affiliations

Thomas Walmsley (1889-1951) was a Scottish anatomist, Professor of Anatomy at Queen's University, Belfast. wikipedia.org


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, embryology, development, animals




NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

                                                                   

Comments

Popular posts from this blog

13c.Soligalich

   Soligalich , icon, Jacob wrestling with the angel ( 13 cent. ).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob wa s left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Soligalich  – Jacob Wrestling with the Angel ( 13 cent. ); original in the  leonovval...

2018WhiteBJ_HerzogMM

   Article: White BJ et al. Simultaneous acetabular labrum and ligamentum teres reconstruction: a case report (2018). A case of ligamentum capitis femoris (LCF) reconstruction using a tendon graft is described. The text in Russian is available at the following link: 2018WhiteBJ_HerzogMM . Simultaneous acetabular labrum and ligamentum teres reconstruction: a case report   White BJ, Scoles AM, Herzog MM   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract This study aims to present the surgical technique for reconstructing both the acetabular labrum and the ligamentum teres and to describe the early outcomes of this procedure in a 15-year-old male with recurrent hip instability. A 15-year-old patient with recurrent left hip dislocation, hip joint instability and failed non-operative intervention presented f...

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

2025SarassaC_HerreraAM

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article : Sarassa C. et al . I ntraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance S tability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes (2025). The article describes a technique for fixing the femoral head using the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2025SarassaC_HerreraAM . [ii]   Original text Abstract Background Developmental dysplasia of the hip (DDH) with complete dislocation (grade ≥III) in older patients often requires open reduction. However, achieving long-term stability remains challenging. This study introduces and evaluates a novel surgical technique, intraosseous tunneling ...

1976CrelinES

  Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Article : Crelin ES. An experimental study of hip stability in human newborn cadavers (1976). The author described an experimental study of the role of ligamentum capitis femoris (LCF) in stabilizing the hip joint and its significance for the occurrence of congenital hip dislocation. The text in Russian is available at the following link: 1976CrelinES . [ii]   Original text (in   German)   An Experimental Study of Hip Stability in Human Newborn Cadavers E. S. Crelin Sections of Gross Anatomy and Orthopaedic Surgery, Yale University School of Medicine, New Haven, Connecticut 06510 Received August 21, 1975   The less frequent variety of hip dislocation occurs before birth and may be associated with neuromuscular disorders such as arthrogr...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», January 2026

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

LCF in 2025 (August)

  LCF in 2025 ( August )   (Quotes from articles and books published in  August  2025 mentioning the ligamentum capitis femoris)   Castro, A., de Melo, C., & Leal, F. (2025). Complications in hip Arthroscopy: Recognizing and managing adverse events. Journal of Clinical Orthopaedics and Trauma , 103144.   [i]   journal-cot.com   Negayama, T., Nishimura, H., Murata, Y., Nakayama, K., Takada, S., Nakashima, H., ... & Uchida, S. (2025). Factors associated with treatment failure after hip arthroscopic surgery for the patient with femoroacetabular impingement secondary to Legg-Calvé-Perthes disease. Journal of ISAKOS , 100937.   [ii]   jisakos.com   Wegman, S. J., Shaikh, H., Brodell Jr, J. D., Cook, P. C., & Giordano, B. D. (2025). Femoral head osteochondral allograft transplantation with and without simultaneous periacetabular osteotomy: a case series. Journal of Hip Preservation Surgery , hnaf037.   [iii] ...

LCF in 2025 (July)

    LCF in 2025 ( July )   (Quotes from articles and books published in July 2025 mentioning the ligamentum capitis femoris.) Tekcan, D., Bilgin, G., & Güven, Ş. Evaluation of Risk Factors for Developmental Dysplasia of the Hip. HAYDARPAŞA NUMUNE MEDICAL JOURNAL , 65 (2), 99-103.   [i]   jag.journalagent.com   Domb, B. G., & Sabetian, P. W. (2025). Greater Trochanteric Pain Syndrome: Gluteal Tendinopathy, Partial Tear, Complete Tear, Iliotibial Band Syndrome, and Bursitis. In Orthopaedic Sports Medicine (pp. 1-17). Springer, Cham.   [ii]   link.springer.com   Kuhns, B. D., Becker, N., Patel, D., Shah, P. P., & Domb, B. G. (2025). Significant Heterogeneity in Existing Literature Limits Both Indication and Outcome Comparability Between Studies Involving Periacetabular Osteotomy For Acetabular Dysplasia With or Without Arthroscopy Despite Improvement for Both: A Systematic Review. Arthroscopy .   [iii]   ...

LCF in 2024 (September)

Publications about the LCF 2024 (September). Chen, P. L., Lu, Y. H., & Hsieh, C. P. (2024). Hip Arthroscopy-assisted Reduction for Irreducible Hip Dislocation: A Case Report.  Formosan Journal of Musculoskeletal Disorders ,  15 (3), 115-119. [i]   journals.lww.com   Domb, B. G., Owens, J. S., Lall, A. C., Harris, W. T., & Kuhns, B. D. (2024). Ten-Year Outcomes in Patients Aged 40 Years and Older After Primary Arthroscopic Treatment of Femoroacetabular Impingement With Labral Repair.  The American Journal of Sports Medicine , 03635465241270291. [ii] journals.sagepub.com   Rossi, F. W., Osman, M., & Mormile, I. (Eds.). (2024).  Prognostic and Predictive Factors in Autoimmune Connective Tissue Disorders . Frontiers Media SA. [iii] books.google.fi   Jimenez, R. Q., Walsh, E., & Domb, B. G. (2024). Revision Hip Arthroscopy: Getting It Right the Second Time.  Operative Techniques in Sports Medicine , 151108. [iv] ...

LCF in 2024 (October)

  Publications about the LCF 2024  ( October ) .   Gänsslen, A., Lindtner, R. A., Krappinger, D., & Franke, J. (2024). Pipkin fractures: fracture type-specific management. Archives of Orthopaedic and Trauma Surgery.  1-14. [i]   link.springer.com   Vesey, R. M., MacDonald, A. A., Brick, M. J., Bacon, C. J., Foo, G. L., Lu, M., ... & Woodward, R. M. (2024). Imaging characteristics of hip joint microinstability: a case–control study of hip arthroscopy patients. Skeletal Radiology.   05 Oct: 1-11.   [ii]   link.springer.com   Wu, W., Liu, M., Zhou, C., Mao, H., Wu, H., Wu, Z., & Ma, C.  (2024).  Efficacy of Outside‐In Hip Arthroscopy without Traction in the Treatment of Hip Synovial Osteochondromatosis. Orthopaedic Surgery.  9999:n/a.   [iii]   onlinelibrary.wiley.com   Yang, J., Zhang, T., Zhu, X., He, Z., Jiang, X., & Yu, S. (2024). miRNA-223-5p Inhibits Hypoxia-induced Apoptosi...