Skip to main content

1916WalmsleyT

  

Article by Walmsley T. A note on the retinacula of Weitbrecht (1916). The author discusses the embryonic development and relationships of the ligamentum capitis femoris (LCF) in humans and animals. 

 

A NOTE ON THE RETINACULA OF WEITBRECHT.

By THOMAS WALMSLEY, M.B., Senior Demonstrator in Anatomy, University of Glasgow.

 

The synovial membrane of the hip-joint is in extent and attachment similar to that of other diarthroses, but the retinacula of Weitbrecht (or ligaments of Stanley) lend to it a special interest. These retinacula are readily recognized on the interior of the capsule as flattened bands passing inwards towards the margin of the head of the femur from the attachment of the peripheral capsule. The following description of their constitution may be selected as expressive of current opinion. The retinacula are arranged in three groups, superior, middle, and inferior: structurally, they are synovial covered capsular reflections: morphologically, the inferior set is said to represent the persistent retinaculunm of the invaginated ligamentum teres (Keith), while the superior set has been described by Frazer as being entirely due to medially directed reflections of the tendon of the M. pyriformis: functionally, they are developed either to prevent intracapsular fracture of the neck of the femur in the infant (Fawcett) or, if that has already occurred, as a means of fixation of the fragments (Hepburn in Cunningham). These descriptions form the bases of this study of these bands.

The blood-vessels which perforate the capsular attachment and pass along the superficies of the neck of the femur to enter the foramina towards the articular margin of the head may be shown by X-ray photographs of mercury-injected specimens to terminate in the metaphysis of the neck and the epiphysis of the head. From the points where they perforate the capsule these vessels derive and carry inwards indefinite fibrous prolongations of the capsule wall which are covered over or are completely invested by reflections of synovial membrane. These elements constitute the retinacula of Weitbrecht. The fibrous prolongations terminate by fusion with the superficial structures of the neck at varying and indefinite distances from their origin, while the synovial reflections pass onwards to the cartilaginous margin of the head where they form the coverings of the " synovial pads of fat." In Haver's definition the term synovial pad is applied to a mass of vascularised fat invested by synovial membrane locally modified for the production of synovia. In addition, however, to the glandular function of the covering membrane, these masses act as movable pads, which are drawn into and occupy the more obvious peripheral spaces which would otherwise occur between the articular surfaces of organic joints during their action.

This separation of the articular surfaces, as I shall show in a forthcoming publication, is peculiar to organic joints, and to fill the potential intervals movable and yielding structures are required: and such are found in two modifications (Goodsir). If space alone is to be occupied synovial pads fulfil the requirements, and associated with each pad is a synovial mechanism for the regulation of its movements; but if resistance to pressure is an additional function fibrocartilaginous tissue is necessary.

In connection with the hip-joint there are three synovial pads: two are in relation to the articular margin of the head of the femur, and the third is situated in the acetabular fossa. The femoral pads are placed in the superior and inferior concavities of the articular margin of the head at the medial ends of the synovial retinacula. Both are freely movable on the underlying tissues of the neck, so that on semi-flexion of the limb, when the whole peripheral capsule, and therefore the synovial retinacula, are relaxed, these pads react to the suction action generated in the joint within the cotyloid ligament, and move so that the inferior comes to lie on the pubic portion of the acetabular margin and occupies an interval which would otherwise be created between that part of the acetabular surface and the femoral neck adjacent to the receding margin of the head. When the inferior retinacula are stretched, as occurs in the tightening of the capsule in extension or hyperflexion, they pull on the synovial pad and flattening it on the neck of the bone remove it from any possible intervention between the articular surface of the acetabulum and the advancing margin of the femoral head. These pads, then, are placed so as to equalise the uneven articular margin of the head of the femur in its varying position on the uniform margin of the acetabulum, and their synovial mechanisms are the retinacula of Weitbrecht. The acetabular pad is placed in the acetabular fossa superficial to its thin easily detached periosteum, to which it is movably united by weak ligamentous connections and fine vascular channels. The amount of the mass varies in individual cases and may here and there seem to be deficient, especially in the upper part of the fossa, but normally is of volume more than sufficient to fill the acetabular fossa, the excess being necessary in its function. The movements of this pad are such that on semi-flexion of the limb it passes into the acetabulum under the action of the suction force within the joint and controlled by the synovial covering of the lig. teres, and abolishes the interval which would otherwise be produced by the apical displacement of the head of the femur: and this movement is visible from the peripheral aspect of the joint as an "indrawing" of the structures superficial to the "acetabular gap." On extension of the limb the excessive portion of the pad is visibly protruded through the acetabular gap, and reaches that position not by an expulsive action of the advancing apical part of the femoral head but by being actively withdrawn by its peculiar synovial retinaculum attached to the superficial part of the lig. teres.

The suction action generated within the joint is entirely within the cotyloid ligament, and is obtained because of the atmospheric vacuum within that part of the articulation in which the joint surfaces undergo separation from one another. Between the articular surfaces, however, there will be at no time any interval unoccupied by synovial fluid or unobliterated by the movable walls of the containing cavity or of the contained femoral head, since the induction of a vacuum interval by separation of the surfaces would determine the onset of a force active in the re-establishment of surface contact, but detrimental, since in direct opposition, to the working of the contracting muscles. In the lateral movement of the head of the femur which accompanies its rotation to semi-flexion from the extended position the apical interval is avoided by the movement of the acetabular pad, which falls into the acetabulum and diminishes its cubic content. The cotyloid ligament, on the other hand, is expanded by the lateral movement of the head and thus the volume of the cavity is increased, but the movements of the femoral pads avoid the appearance of any marginal interval.

We have determined these facts in the adult human subject, and after consideration of the retinacula in some of the domestic carnivore, (1) certain of the ungulata, (l) and in one of the apes, feel that the following conclusions are justified: That the incidence of the retinacula is coincident with the blood-vessels of the epiphysis of the head and metaphysis of the neck as determined by dissection of the recent specimen or by analysis of the vascular foramina in the macerated bone: that they are reflections of the synovial membrane over the fibrous sheaths of these vessels, and the sheaths are indefinite prolongations of the capsule wall: that they serve as an active mechanism in the function of the femoral synovial pads. Further, we would believe that none of them possesses any peculiar morphological significance, but that they are developed and are retained permanently where they will be free from direct capsular pressure and are associated with the blood-vessels and synovial pads purposively and precisely in those situations.

 

(1) In these groups there is no superior retinaculum, nor superior femoral synovial pad, owing to the shape and articular incidence of that area of the femoral head.

 

In denying the morphological significance of the inferior retinaculum it seems reasonable to conclude that the view advanced by Keith is in itself insufficient to account for the persistent retention of a structure, of importance only at so remote a stage in phylogeny: nor is it in agreement with the facts of comparative embryology. In the human embryo the lig. teres is completely free at the first appearance of the joint cleft: in the embryo tapir a synovial mesentery binds the ligament to the capsule wall, while in the adult the ligament is invested as in the human subject (Welcher): in the walrus, where the limb pertains to the reptilian type, the ligament arises within the joint cavity permanently enfolded in a synovial reflection from the capsule (Moser). We believe these facts to indicate that the inferior femoral retinaculum does not represent, in whole at least, the persistent remains of the mesentery of the invaginated lig. teres, but that this mesentery would, and possibly does occur, as the retinaculuin of the acetabular pad of fat (also described by Weitbrecht) which arises in relation to the extra-acetabular part of the lig. teres and invests the blood-vessels passing through the acetabular gap to the acetabular synovial pad. As regards the superior group being the direct prolongation of the tendon of the M. pyriformis, we believe this to be the seeming result of the fusion of that tendinous expansion with the capsule, and that it is from the capsule that the fibrous elements of the retinaculum are derived. In the majority of mammalian groups (of all we have examined) the superior retinaculum is absent, and this we have associated with the shape of the articular femoral head.

In the infant the retinacula are of relatively larger size than in the adult, and we would relate the fact to the relatively larger blood-vessels which pass to the head at that period.

 

External links

Walmsley T. A note on the retinacula of Weitbrecht. Journal of Anatomy. 1916;51(Pt 1)61-4. ncbi.nlm.nih.gov


Authors & Affiliations

Thomas Walmsley (1889-1951) was a Scottish anatomist, Professor of Anatomy at Queen's University, Belfast. wikipedia.org


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, embryology, development, animals




NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

                                                                   

Comments

Popular posts from this blog

LCF in 2025 (December)

  LCF in 2025 ( December)   (Quotes from articles and books published in  December  2025 mentioning the ligamentum capitis femoris)   Sarassa, C., Aristizabal, S., Mejía, R., García, J. J., Quintero, D., & Herrera, A. M. (2025). Intraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance Stability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes. Journal of Pediatric Orthopaedics , 10-1097.   [i]      journals.lww.com   Kampouridis, P., Svorligkou, G., Spassov, N., & Böhme, M. (2025). Postcranial anatomy of the Late Miocene Eurasian hornless rhinocerotid Chilotherium. PLoS One , 20 (12), e0336590.     [ii]      journals.plos.org   Burdette, T. N., Hsiou, C. L., McDonough, S. P., Pell, S., Ayers, J., Divers, T. J., & Delvescovo, B. Sidewinder syndrome associated with complete rupture of the ligamentum capitis ossis femoris in a horse. Eq...

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

2008DoddsMK_McCormackD

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Dodds MK et al . Transarticular stabilization of the immature femoral head: assessment of a novel surgical approach to the dislocating pediatric hip in a porcine model (2008). The article describes an experiment of reconstruction of ligamentum capitis femoris (LCF) in pigs with the formation of a femoral tunnel. The text in Russian is available at the following link:  2008DoddsMK_McCormackD . [ii]   Original text Abstract Background: Acetabular dysplasia and hip instability are common in neuromuscular diseases such as spina bifida and cerebral palsy due to deranged muscle function around the hip. Occasionally in developmental dysplasia of the hip, persistent instability may be difficult to manage by standard treatments. It i...

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.  January 05, 2026 2018YoussefAO The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_OkaetR The authors demonstrated in the experiment that the strength of the LCF is sufficient to ensure early stability during hip joint reconstruction in children. January 04, 2026 2008 BacheCE _TorodeIP The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation .  2021PaezC_WengerDR The ar ticle analyzes the results of open reconstruction of LCF in dysplasia.   2008DoddsMK...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

2012FrederickP_KelmanDC

   Invention (Patent): Frederick P, Belew K, Jasper L, Gatewood J, Gibson L, Masonis J, Cooper M, Kelman DC. Methods and apparatus for FAI surgeries.  US20120283840A1   (2012).   US20120283840A1 US Inventors: Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman Current Assignee: Smith and Nephew Inc Worldwide applications 2010 KR JP RU BR CA US CN EP CN WO AU 2014 US 2016 AU 2017 AU Application US13/202,612 events: 2010-02-25 Заявка подана Smith and Nephew Inc 2010-02-25 Приоритет US13/202,612 2012-11-08 Публикация US20120283840A1 2014-12-02 Заявка удовлетворена 2014-12-02 Публикация US8900320B2 Статус: Активный 2031-06-08 Измененный срок действия   Methods and apparatus for FAI surgeries Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman   Abstract A partial rim implant for an acetabulum in a pelvic bone comprise...

2011HosalkarHS_WengerDR

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Hosalkar HS et al . Isocentric reattachment of ligamentum teres: a porcine study (2011). The article describes a method of isocentric fixation of the proximal end of the ligamentum capitis femoris (LCF) during plastic surgery in an experiment on pigs. The text in Russian is available at the following link: 2011HosalkarHS_WengerDR . [ii]   Original text Abstract Background: Recent reports reveal interest in the mechanical importance of ligamentum teres (LT) in hip dislocation. In the previously established procedure of anteroinferior acetabular LT reattachment in developmental dysplasia of the hip, the LT functions as a check-rein, showing promising results. However, this position of reattachment could potentially limit motion. Th...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

2023AbibeRB_SaundersWB

  Article: Abibe RB et al. Ligamentum teres reconstruction using autogenous semitendinosus tendon with toggle technique in rabbits (2023). The article describes experimental reconstruction of ligamentum capitis femoris (LCF) in rabbits. The text in Russian is available at the following link:  2023AbibeRB_SaundersWB . Ligamentum teres reconstruction using autogenous semitendinosus tendon with toggle technique in rabbits Abibe RB, Rahal SC, Reis Mesquita LD, Doiche D, da Silva JP, Mamprim MJ, Pinho RH, Battazza A, Alves CEF, Saunders WB   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Background Ligamentum teres (LT) has traditionally been considered a vestigial or redundant structure in humans; however, based on new studies and the evolution of hip arthroscopy, the LT injury has been viewed as a source of hi...

2007WengerD_OkaetR

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Wenger D et al . The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children’s hip surgery (2007). The authors demonstrated in the experiment that the strength of the ligamentum capitis femoris (LCF) is sufficient to ensure early stability during hip joint reconstruction in children. The text in Russian is available at the following link: 2007WengerD_OkaetR . [ii]   Original text Abstract The anatomic and histological characteristics of the ligamentum teres and its vascular contributions to the femoral head have been well described. The function of the ligamentum teres remains poorly understood. Although excision is the current standard in treating complete developme...