Skip to main content

Vertebrates


VERTEBRATES


According to the molecular clock, a specific method for dating phylogenetic events, vertebrates (Vertebrata) separated from arthropods (Arthropoda) 976±97 Ma (2004HedgesSB_ShoeJL). The latter began to dominate in species diversity with the Cambrian burst of radiation, which occurred 520 Ma (2010EdgecombeGD). This ratio in the fauna of the Earth is still preserved.

Approximately 525 Ma, the phylum Chordates separated from the group of bilaterally symmetrical animals (1995ChenJY_ZhouGQ). In turn, the evolution of chordate organisms led to the formation of the first vertebrates at least 500 Ma, from which the jawed mouths 450-400 Ma descended, becoming the ancestors of the placoderms or "armored" fish (Placodermi) (1979НаумовНП_КарташевНН).


Sculptural reconstruction of the placoderm Coccosteus from the order Arthrodires, Middle Devonian, 393.3-382.7 Ma; exposition of the Orlov Paleontological Museum (Moscow); photo by the author.

The first cartilaginous fish (Chondrichthyes) appeared 430 Ma (2001MärssT_GagnierPY). Bony fish (Osteichthyes) descended from cartilaginous fish about 423 Ma (2004ZhuM_AhlbergPE). The earliest fossil of a lobe-finned fish (Sarcopterygii) – Osteichthyes is about 418 million years old (1998YuX).


Cast of the fossil Holoptychius jarviki (clade Sarcopterygii, order Proleptiformes), late Devonian, 382.7-358.9 Ma; Exposition of the Orlov Paleontological Museum (Moscow); photo by the author.


Cast of the living species Latimeria chalumnae (clade Sarcopterygii, order Actinistia); exposition of the Orlov Paleontological Museum (Moscow), photo by the author.


One of the "offshoots” of the lobe-finned fish branch is the lungfish (Dipnoi), the fossil record of which falls on the early (lower) Devonian period, that is, on the interval of 419.2-393.3 Ma (2017KempA_GuinotG; 2023CohenKM_CarN). Lungfish became the immediate ancestors of land animal species (2001CampbellKSW_BarwickRE). According to updated data, the separation of lungfish and tetrapods (Tetrapod) occurred 426.5-416.0 Ma (2021ZhaoW_ZhuM). The clade of tetrapods (Tetrapodomorpha) began to form approximately 409 Ma. The oldest representative of the stem tetrapods Tungsenia, dates back to the Prague stage (410.8-407.6 Ma) of the Devonian period (2012LuJ_QiaoT; 2023CohenKM_CarN).


Model of the osteolepiform rhipidistia Osteolepis (clade Tetrapodomorpha) of the Devonian period; exposition of the Orlov Paleontological Museum (Moscow), photo by the author.

Previously, the oldest tetrapodomorph was considered to be the fish Kenichthys, which flourished 395 Ma (2004ZhuM_AhlbergP; 2005MüllerJ_ReiszRR). Perhaps the animal had paired pectoral and pelvic fins - the precursors of legs. Unfortunately, this is not known for sure.

The tetrapodomorph sarcopterygian Tinirau clackae was found in a layer dating to the late Givetian stage, or 387.7-382.7 Ma (2023CohenKM_CarN). The pelvis of this species was articulated caudally with the femur via the acetabulum. Its shape was elliptical, elongated, with a height/length ratio of 0.42 (2012SwartzB).


Complete restoration of Tinirau clackae (from 2012SwartzB: Fig. 2B).



Articular fossae and pelvic limbs of some stem tetrapods (from 2012SwartzB: Fig. 5).


The Megalichthyids clade of sarcopterygian tetrapodomorph fishes appeared in the middle or late Devonian, i.e. 393.3-358.9 Ma, and existed until the Lower Permian, or 298.9 Ma (2012WitzmannF_SchochRR; 2021ClementAM_LongJ; 2023CohenKM_CarN). In Megalichthys, half of the pelvis was probably an elongated cartilaginous element covered with a layer of dense bone with a concave-truncated distal end (1900WellburnED). This concavity is the acetabulum, was connected with the bones of the pelvic fin.


Reconstruction of the appearance of Megalichthyids (from 1900WellburnED:Pl.XIII).


Pelvis and pelvic fin of Megalichthyids; Pel. - the pelvis of an animal (from 1900WellburnED:Pl.XVII.E).


The next stage of the transition from fish to tetrapods was the formation of the Elpistostegalia clade. The most ancient fish of the order - Panderichthys is dated to 385.3 Ma (2010NiedźwiedzkiG_AhlbergPE). These animals had two pairs of limbs: front and back, resembling fins. The skeleton of the back fins contained femur articulated with the pelvis and not directly connected to the spine. This fish moved using its front fins and body bends. The acetabulum of Panderichthys was oriented backwards, which made it impossible to push off with the pelvic fins, which had an insignificant supporting role (2005BoisvertCA). As is evident from the reconstruction, the femur of the mentioned animal is flattened, which predetermines the elliptical shape of the acetabulum. Z. Johanson, P.E. Ahlberg (2001) analyzed the pelvic bones of an early representative of tetrapodomorph fishes of the rhizodontid order Gooloogongia loomesi, which lived in the Late Devonian (382.7-358.9 Ma) and found a well-defined acetabulum. At the same time, the authors noted the absence of sacral ribs and ischial bones in this species. The acetabulum of Gooloogongia loomesi faces backwards, is a large, strongly concave structure associated with the proximal parts of the ilium and pubic processes. This depression on the pelvic surface lacks a developed edge, and in the posterior section it smoothly merges with the posteroventral surface of the ramus of the ilium (2001JohansonZ_AhlbergPE:Fig. 12).

A.H. Foord described in 1880 one of the early tetrapodomorphs Eusthenopteron foordi (genus Eusthenopteron, family Tristichopteridae) (1881WhiteavesJF). A review of the pelvis of a specimen of Eusthenopteron foordi from the Faranian stage of the Upper Devonian (382.7-372.2 Ma) is known, which had two halves connected into a single structure, possibly by a cartilaginous element. Each half of the pelvis is subdivided into the iliac and pubic parts, forming the acetabulum. It faces caudally and downwards, is shallow, concave, oval-oblong, and must have been covered with cartilage during life. At the edge of the acetabulum are two large processes to which muscles were apparently attached (1970 AndrewsSM_WestollTS). It is possible that the proximal parts of the pubofemoral and iliofemoral ligaments were attached to them.


Reconstruction of the appearance of Eusthenodon tresnensis (exhibition of the Orlov Paleontological Museum, Moscow); clade Eotetrapodiformes, family Tristichopteridae, genus Eusthenodon flourished in the period 383-359 Ma (2002 Clément G; 2007 Blom H_Friedman M), photo by the author.


Pelvis of the fish Eusthenopteron; ac. – acetabular (from 1970 Andrews SM_Westoll TS; Fig. 14).



Recently, a new finned elpistostegalian Qikiqtania wakei from the late Devonian period (382.7-358.9 Ma) was discovered, which cannot yet be classified as a tetrapod (2022 Stewart TA_Shubin NH; 2023 Cohen KM_CarN). The pelvis and the hind fins of the specimen found were not preserved, so it is not possible to clarify the shape of the acetabulum and the stereotype of movement. At the same time, it is known that fish, even in the absence of finger-like limbs, are able to move by walking movements using fins and rotating the appendicular girdles relative to the long axis of the body (2016FlammangBE_SoaresD). We believe that Qikiqtania wakei could move along the bottom and shallow water in a similar manner.

It was previously believed that the diversification of tetrapodomorphs occurred in the following order of taxa appearance: Eusthenopteron, Panderichthys, Elpistostege, Tiktaalik, Elginerpeton, Ventastega, Acanthostega and Ichthyostega (2007ClackJA). Currently, the development of tetrapodomorphs looks like this: Tinirau, Eusthenopteron, Megalichthys, Panderichthys, Qikiqtania, Tiktaalik, Elpistostege, Parmastega, Ventastega, Acanthostega Elginerpeton, Ymeria, Ichthyostega (2022 StewartTA_ShubinNH).

We analyzed the shape of the femur and acetabulum in ancient fish species before Tiktaalik. No signs of an acetabular fossa or a fossa of the femoral head were noted in this group of the most ancient vertebrates.

We have analyzed the shape of the femur and acetabulum in ancient fish species before Tiktaalik. No signs of an acetabular fossa or a femoral head fossa were noted in this group of the oldest vertebrates. Therefore, the above-mentioned ancestors of tetrapods did not yet have a ligamentum capitis femoris (LCF) attached directly to the bone.

References

Hedges SB, Blair JE, Venturi ML, Shoe JL. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC evolutionary biology. 2004;4(1)1-9. [link.springer.com]

Edgecombe GD. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure & Development. 2010;39(2-3)74-87. [sciencedirect.com

Chen JY, Dzik J, Edgecombe GD, Ramsköld L, Zhou GQ. A possible Early Cambrian chordate. Nature. 1995;377(6551)720-2. [nature.com]

Наумов НПКарташев ННЗоология позвоночныхЧ. 1. Низшие хордовые, бесчелюстные, рыбы, земноводные: Учебник для биолог. спец. ун-тов. Москва: Высшая школа, 1979.  [batrachos.com]

Märss T, Gagnier PY. A new chondrichthyan from the Wenlock, lower Silurian, of Baillie-Hamilton Island, the Canadian Arctic. Journal of Vertebrate Paleontology. 2001;21(4):693-701.  [tandfonline.com]

Zhu M, Ahlberg PE. The origin of the internal nostril of tetrapods. Nature. 2004;432(7013)94-7. [academia.edu]

Yu X. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. Journal of Vertebrate Paleontology. 1998;18(2)261-74.  [tandfonline.com]

Kemp A, Cavin L, Guinot G. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;471:209-19.  [sciencedirect.com]

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Campbell KSW, Barwick RE. Diabolepis and its relationship to the Dipnoi. Journal of Vertebrate Paleontology. 2001;21(2)227-41. [tandfonline.com]

Zhao W, Zhang X; Jia G, Shen Y, Zhu M. The Silurian-Devonian boundary in East Yunnan (South China) and the minimum constraint for the lungfish-tetrapod split. Science China Earth Sciences. 2021;64(10)1784-97.  [link.springer.com]

Lu J, Zhu M, Long JA, Zhao W, Senden TJ, Jia L, Qiao T. The earliest known stem-tetrapod from the Lower Devonian of China. Nature communications. 2012;3(1)1-7.   [nature.com]

Müller J, Reisz RR. Four wellconstrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays. 2005;27(10)1069-75.  [onlinelibrary.wiley.com]

Swartz B. A marine stem-tetrapod from the Devonian of Western North America. PLOS ONE. 2012;7(3)e33683.  [ncbi.nlm.nih.gov]

Witzmann F, Schoch RR. A megalichthyid sarcopterygian fish from the Lower Permian (Autunian) of the Saar-Nahe Basin, Germany. Geobios. 2012;45(2)241-8.  [academia.edu]

Clement AM, Cloutier R, Lu J, Perilli E, Maksimenko A, Long J. A fresh look at Cladarosymblema narrienense, a tetrapodomorph fish (Sarcopterygii: Megalichthyidae) from the Carboniferous of Australia, illuminated via X-ray tomography. PeerJ. 2021;9:e12597. [peerj.com]

Wellburn ED. On the Genus Megalichthys, Agassiz: Its History, Systematic Position, and Structure. In Proceedings of the Yorkshire Geological and Polytechnic Society. 1900;14(1)52-71. [scholar.archive.org]

Niedźwiedzki G, Szrek P, Narkiewicz K, Narkiewicz M, Ahlberg PE. Tetrapod trackways from the early Middle Devonian period of Poland. Nature. 2010;463(7277)43-8.  [academia.edu]

Boisvert CA. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature. 2005;438(7071)1145-7. [academia.edu]

Johanson Z, Ahlberg PE. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2001;92(1):43-74. [academia.edu]

Whiteaves JF. On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, in the Province of Quebec. Annals and Magazine of Natural History. 1881;8(44)159–62.   [tandfonline.com]

Andrews SM, Westoll TS. IX - The postcranial skeleton of Eusthenopteron foordi Whiteaves. Transactions of the Royal Society of Edinburgh. 1970;68(9)207-329.  [cambridge.org]

Clément G. Large Tristichopteridae (Sarcopterygii, Tetrapodomorpha) from the Late Famennian Evieux Formation of Belgium. Palaeontology. 2002;45(3)577-93.             [onlinelibrary.wiley.com]

Blom H, Clack JA, Ahlberg PE, Friedman M. Devonian vertebrates from East Greenland: a review of faunal composition and distribution. Geodiversitas. 2007;29(1)119-41. [academia.edu]

Stewart TA, Lemberg JB, Daly A, Daeschler EB, Shubin NH. A new elpistostegalian from the Late Devonian of the Canadian Arctic. Nature. 2022;608(7923)563-8. [nature.com

Flammang BE, Suvarnaraksha A, Markiewicz J, Soares D. Tetrapod-like pelvic girdle in a walking cavefish. Scientific reports. 2016;6(1)1-8.  [nature.com]

Clack JA. Gaining Ground. Indiana: Indiana University Press, 2012. [books.google]


                                                                     

The original text in Russian is available at the link: Позвоночные животные

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

LCF in 2025 (November)

  LCF in 2025 ( November )   (Quotes from articles and books published in  October  2025 mentioning the ligamentum capitis femoris)   Awad, A., Rizk, A., ElAlfy, M., Hamed, M., Abdelghany, A. M., Mosbah, E., ... & Karrouf, G. (2025). Synergistic Effects of Hydroxyapatite Nanoparticles and Platelet Rich Fibrin on Femoral Head Avascular Necrosis Repair in a Rat Model.  Journal of Biomedical Materials Research Part B: Applied Biomaterials ,  113 (11), e35672.    [i]    onlinelibrary.wiley.com   Loughzail, M. R., Aguenaou, O., Fekhaoui, M. R., Mekkaoui, J., Bassir, R. A., Boufettal, M., ... & Lamrani, M. O. (2025). Posterior Fracture–Dislocation of the Femoral Head: A Case Report and Review of the Literature.  Sch J Med Case Rep ,  10 , 2483-2486.     [ii]    saspublishers.com  ,  saspublishers.com   Vertesich, K., Noebauer-Huhmann, I. M., Schreiner, M., Schneider, E., Willegger,...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

1816MeckelJF

    The author discusses the anatomy and function of the ligamentum capitis femoris (LCF), and also identifies one of the reasons for its damage. The translation was done in collaboration with ChatGPT 3.5.   Meckel JF. Handbuch der menschlichen Anatomie. Zweiter Band. Besondere Anatomie. Halle, Berlin: Buchhandlung des Hallischen Waisenhauses, 1816. [fragment] Quote p p . 3 65 -366 c. Runds band §. 948. Gerade vor dem Theile der Synovialhaut, welcher auf der Lücke unter dem brückenförmigen Theile der Knorpellippe liegt, entspringt ein, ungefähr einen Zoll langes, sehr länglichviereckiges Band, das runde Band des Oberschenkels (Ligamentum ossis femoris teres s. rotundum) welches, an beiden Enden etwas ausgebreitet, sich mit seis nem äußern an die Bertiefung im Kopfe des Oberschenkels beines heftet und zu noch größerer Befestigung deffelben beiträgt. Es besteht aus longitudinalen Fasern, welche sich an das obere un...

BIBLICAL DAMAGE

  Biblical damage (Artists and sculptors on the LCF damage described in the Bible:  painting, sculpture, icon, fresco, engraving…)     386Brescia_Casket  Bas-relief. Drawing depicting the circumstances and mechanism of the LCF injury. 6c.Vienna_Genesis   Miniature. Drawing depicting the circumstances and mechanism of the LCF injury. 10c.Cross  Bas-relief. Drawing depi cting the circumstances and mechanism of the LCF injury.  1000Jacob&Archangel  Fresco. Drawing depicting the circumstances and mechanism of the LCF injury.  1050Aelfric     Drawing depicting the circumstances and mechanism of the LCF injury.  1140St.Marie-Madeleine   Capital. Drawing depicting the circumstances and mechanism of the LCF injury.  1143 Palantine_Chapel   Mosaic . Drawing depicting the circumstances and mechanism of the LCF injury. 1213L’histoire_ancienne.   M iniature . Drawing depicting the circumstances and mecha...

1832MeckelJF

  Fragments of the book Meckel JF. Manual of general, descriptive, and pathological anatomy (1832) dedicated to ligamentum capitis femoris (LCF). The author briefly discusses abnormalities of the LCF and its distal insertion. Quote p. 257 § 308. Among the deviations from the normal state, primitive deviations of the external form are rare, and usually attend anomalies of the other tissues. Among these we arrange, for instance, the absence of the tendons of the abdominal muscles, that of the ligaments of the vertebral column, and that of the dura mater of the brain and spinal marrow, &c., in a congenital fissure of the abdomen, of the vertebral column, and of the skull, and that of the tendons and the muscles of a finger, when the finger itself is wanting. But the fibrous organs are seldom deficient, when the other tissues with which they combine to form a part are present — for instance, the tendon alone of a muscle is rarely absent, or the tunica sclerotica, when the othe...

1884SuttonJB

  Fragments from the article Sutton JB. Ligaments: Their Nature and Morphology (1884). The author discovered that in the ostrich the ligamentum capitis femoris (LCF) was not continuous with the ambiens muscle, but with a muscular slip which ran parallel with the-muscle, and ended in the adductor mass. This publication develops the theme of article 1883SuttonJB .   Quote pp. 228-229 I must now pass on to consider certain ligaments of the appendicular skeleton, commencing with some additional remarks on the ligamentum teres. The Journal of Anatomy and Physiology, vol. xvii January 1883, contains a short article on the ligamentum teres, in which I have endeavoured to point out that many ligaments are the tender of muscles which were originally in relation with the joint; but the parent muscle has either formed new attachments or become obsolete, whilst the tendon remains as a passive element in the articulation. In addition to the ligamentum teres the following structures ...

2025VertesichK_ChiariC

   Content [i]   Annotation [ii]   Original text (in  German) [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments from the article: Vertesich K, Noebauer-Huhmann IM, Schreiner M, Schneider E, Willegger M, Böhler C, Windhager R, Chiari C. The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study (2025). The authors discuss the diagnosis of pathology of the ligamentum capitis femoris (LCF) based on radiological & MRI data. The text in Russian is available at the following link: 2025VertesichK_ChiariC . [ii]   Original text (in   German)   The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study Klemens Vertesich, Iris-Melanie Noebauer-Huhmann, Marku...

2024MiglioriniF_MaffulliN

   Abstract and table 4 ( overview of LCF tear classification ) of the article Migliorini F et al. The ligamentum teres and its role in hip arthroscopy for femoroacetabular impingement: a systematic review.  (2024). Translation into Russian is available at the link: 2024MiglioriniF_MaffulliN . Systematic Review / Open access / Published: 20 December 2024 The ligamentum teres and its role in hip arthroscopy for femoroacetabular impingement: a systematic review Filippo Migliorini, Federico Cocconi, Tommaso Bardazzi, Virginia Masoni, Virginia Gardino, Gennaro Pipino, Nicola Maffulli  Journal of Orthopaedics and Traumatology  volume 25, Article number: 68 (2024)    Abstract Background The ligamentum teres (LT) has received attention in patients undergoing hip arthroscopy (HA) for femoroacetabular impingement (FAI). Indeed, a better understanding of the function of the LT and its implications for cli...

1869MivartG

  The author discusses his observations of LCF absence in chimpanzees and orangutans.   IX. Contributions towards a more complete knowledge of the Skeleton of the Primates . By Sr. George Mivart, F.L.S., Lecturer on Comparative Anatomy at St. Mary's Hospital. Part I. The Appendicular Skeleton of Simia. Read December 13th, 1866. [Pirates XXXV. to XLIII.] Quote p. 200 It is commonly asserted that the ligamentum teres is absent in. the Orang, as also the pit for its reception on the head of the femur (1). I find no trace of the latter in either femur of any specimen, with one exception (2); but in that. exceptional specimen each femur (Pl. XL. fig. 7 i) exhibits a small but distinct depression on its head in the place occupied in other forms by the pit for the round ligament. This absence has not, as far as I am aware, been noticed in Man or the Chimpanzee; but. in the Gorilla I have sometimes been unable to detect any trace of such a fossa on the head of the femu...