Skip to main content

Vertebrates


VERTEBRATES


According to the molecular clock, a specific method for dating phylogenetic events, vertebrates (Vertebrata) separated from arthropods (Arthropoda) 976±97 Ma (2004HedgesSB_ShoeJL). The latter began to dominate in species diversity with the Cambrian burst of radiation, which occurred 520 Ma (2010EdgecombeGD). This ratio in the fauna of the Earth is still preserved.

Approximately 525 Ma, the phylum Chordates separated from the group of bilaterally symmetrical animals (1995ChenJY_ZhouGQ). In turn, the evolution of chordate organisms led to the formation of the first vertebrates at least 500 Ma, from which the jawed mouths 450-400 Ma descended, becoming the ancestors of the placoderms or "armored" fish (Placodermi) (1979НаумовНП_КарташевНН).


Sculptural reconstruction of the placoderm Coccosteus from the order Arthrodires, Middle Devonian, 393.3-382.7 Ma; exposition of the Orlov Paleontological Museum (Moscow); photo by the author.

The first cartilaginous fish (Chondrichthyes) appeared 430 Ma (2001MärssT_GagnierPY). Bony fish (Osteichthyes) descended from cartilaginous fish about 423 Ma (2004ZhuM_AhlbergPE). The earliest fossil of a lobe-finned fish (Sarcopterygii) – Osteichthyes is about 418 million years old (1998YuX).


Cast of the fossil Holoptychius jarviki (clade Sarcopterygii, order Proleptiformes), late Devonian, 382.7-358.9 Ma; Exposition of the Orlov Paleontological Museum (Moscow); photo by the author.


Cast of the living species Latimeria chalumnae (clade Sarcopterygii, order Actinistia); exposition of the Orlov Paleontological Museum (Moscow), photo by the author.


One of the "offshoots” of the lobe-finned fish branch is the lungfish (Dipnoi), the fossil record of which falls on the early (lower) Devonian period, that is, on the interval of 419.2-393.3 Ma (2017KempA_GuinotG; 2023CohenKM_CarN). Lungfish became the immediate ancestors of land animal species (2001CampbellKSW_BarwickRE). According to updated data, the separation of lungfish and tetrapods (Tetrapod) occurred 426.5-416.0 Ma (2021ZhaoW_ZhuM). The clade of tetrapods (Tetrapodomorpha) began to form approximately 409 Ma. The oldest representative of the stem tetrapods Tungsenia, dates back to the Prague stage (410.8-407.6 Ma) of the Devonian period (2012LuJ_QiaoT; 2023CohenKM_CarN).


Model of the osteolepiform rhipidistia Osteolepis (clade Tetrapodomorpha) of the Devonian period; exposition of the Orlov Paleontological Museum (Moscow), photo by the author.

Previously, the oldest tetrapodomorph was considered to be the fish Kenichthys, which flourished 395 Ma (2004ZhuM_AhlbergP; 2005MüllerJ_ReiszRR). Perhaps the animal had paired pectoral and pelvic fins - the precursors of legs. Unfortunately, this is not known for sure.

The tetrapodomorph sarcopterygian Tinirau clackae was found in a layer dating to the late Givetian stage, or 387.7-382.7 Ma (2023CohenKM_CarN). The pelvis of this species was articulated caudally with the femur via the acetabulum. Its shape was elliptical, elongated, with a height/length ratio of 0.42 (2012SwartzB).


Complete restoration of Tinirau clackae (from 2012SwartzB: Fig. 2B).



Articular fossae and pelvic limbs of some stem tetrapods (from 2012SwartzB: Fig. 5).


The Megalichthyids clade of sarcopterygian tetrapodomorph fishes appeared in the middle or late Devonian, i.e. 393.3-358.9 Ma, and existed until the Lower Permian, or 298.9 Ma (2012WitzmannF_SchochRR; 2021ClementAM_LongJ; 2023CohenKM_CarN). In Megalichthys, half of the pelvis was probably an elongated cartilaginous element covered with a layer of dense bone with a concave-truncated distal end (1900WellburnED). This concavity is the acetabulum, was connected with the bones of the pelvic fin.


Reconstruction of the appearance of Megalichthyids (from 1900WellburnED:Pl.XIII).


Pelvis and pelvic fin of Megalichthyids; Pel. - the pelvis of an animal (from 1900WellburnED:Pl.XVII.E).


The next stage of the transition from fish to tetrapods was the formation of the Elpistostegalia clade. The most ancient fish of the order - Panderichthys is dated to 385.3 Ma (2010NiedźwiedzkiG_AhlbergPE). These animals had two pairs of limbs: front and back, resembling fins. The skeleton of the back fins contained femur articulated with the pelvis and not directly connected to the spine. This fish moved using its front fins and body bends. The acetabulum of Panderichthys was oriented backwards, which made it impossible to push off with the pelvic fins, which had an insignificant supporting role (2005BoisvertCA). As is evident from the reconstruction, the femur of the mentioned animal is flattened, which predetermines the elliptical shape of the acetabulum. Z. Johanson, P.E. Ahlberg (2001) analyzed the pelvic bones of an early representative of tetrapodomorph fishes of the rhizodontid order Gooloogongia loomesi, which lived in the Late Devonian (382.7-358.9 Ma) and found a well-defined acetabulum. At the same time, the authors noted the absence of sacral ribs and ischial bones in this species. The acetabulum of Gooloogongia loomesi faces backwards, is a large, strongly concave structure associated with the proximal parts of the ilium and pubic processes. This depression on the pelvic surface lacks a developed edge, and in the posterior section it smoothly merges with the posteroventral surface of the ramus of the ilium (2001JohansonZ_AhlbergPE:Fig. 12).

A.H. Foord described in 1880 one of the early tetrapodomorphs Eusthenopteron foordi (genus Eusthenopteron, family Tristichopteridae) (1881WhiteavesJF). A review of the pelvis of a specimen of Eusthenopteron foordi from the Faranian stage of the Upper Devonian (382.7-372.2 Ma) is known, which had two halves connected into a single structure, possibly by a cartilaginous element. Each half of the pelvis is subdivided into the iliac and pubic parts, forming the acetabulum. It faces caudally and downwards, is shallow, concave, oval-oblong, and must have been covered with cartilage during life. At the edge of the acetabulum are two large processes to which muscles were apparently attached (1970 AndrewsSM_WestollTS). It is possible that the proximal parts of the pubofemoral and iliofemoral ligaments were attached to them.


Reconstruction of the appearance of Eusthenodon tresnensis (exhibition of the Orlov Paleontological Museum, Moscow); clade Eotetrapodiformes, family Tristichopteridae, genus Eusthenodon flourished in the period 383-359 Ma (2002 Clément G; 2007 Blom H_Friedman M), photo by the author.


Pelvis of the fish Eusthenopteron; ac. – acetabular (from 1970 Andrews SM_Westoll TS; Fig. 14).



Recently, a new finned elpistostegalian Qikiqtania wakei from the late Devonian period (382.7-358.9 Ma) was discovered, which cannot yet be classified as a tetrapod (2022 Stewart TA_Shubin NH; 2023 Cohen KM_CarN). The pelvis and the hind fins of the specimen found were not preserved, so it is not possible to clarify the shape of the acetabulum and the stereotype of movement. At the same time, it is known that fish, even in the absence of finger-like limbs, are able to move by walking movements using fins and rotating the appendicular girdles relative to the long axis of the body (2016FlammangBE_SoaresD). We believe that Qikiqtania wakei could move along the bottom and shallow water in a similar manner.

It was previously believed that the diversification of tetrapodomorphs occurred in the following order of taxa appearance: Eusthenopteron, Panderichthys, Elpistostege, Tiktaalik, Elginerpeton, Ventastega, Acanthostega and Ichthyostega (2007ClackJA). Currently, the development of tetrapodomorphs looks like this: Tinirau, Eusthenopteron, Megalichthys, Panderichthys, Qikiqtania, Tiktaalik, Elpistostege, Parmastega, Ventastega, Acanthostega Elginerpeton, Ymeria, Ichthyostega (2022 StewartTA_ShubinNH).

We analyzed the shape of the femur and acetabulum in ancient fish species before Tiktaalik. No signs of an acetabular fossa or a fossa of the femoral head were noted in this group of the most ancient vertebrates.

We have analyzed the shape of the femur and acetabulum in ancient fish species before Tiktaalik. No signs of an acetabular fossa or a femoral head fossa were noted in this group of the oldest vertebrates. Therefore, the above-mentioned ancestors of tetrapods did not yet have a ligamentum capitis femoris (LCF) attached directly to the bone.

References

Hedges SB, Blair JE, Venturi ML, Shoe JL. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC evolutionary biology. 2004;4(1)1-9. [link.springer.com]

Edgecombe GD. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure & Development. 2010;39(2-3)74-87. [sciencedirect.com

Chen JY, Dzik J, Edgecombe GD, Ramsköld L, Zhou GQ. A possible Early Cambrian chordate. Nature. 1995;377(6551)720-2. [nature.com]

Наумов НПКарташев ННЗоология позвоночныхЧ. 1. Низшие хордовые, бесчелюстные, рыбы, земноводные: Учебник для биолог. спец. ун-тов. Москва: Высшая школа, 1979.  [batrachos.com]

Märss T, Gagnier PY. A new chondrichthyan from the Wenlock, lower Silurian, of Baillie-Hamilton Island, the Canadian Arctic. Journal of Vertebrate Paleontology. 2001;21(4):693-701.  [tandfonline.com]

Zhu M, Ahlberg PE. The origin of the internal nostril of tetrapods. Nature. 2004;432(7013)94-7. [academia.edu]

Yu X. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. Journal of Vertebrate Paleontology. 1998;18(2)261-74.  [tandfonline.com]

Kemp A, Cavin L, Guinot G. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;471:209-19.  [sciencedirect.com]

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Campbell KSW, Barwick RE. Diabolepis and its relationship to the Dipnoi. Journal of Vertebrate Paleontology. 2001;21(2)227-41. [tandfonline.com]

Zhao W, Zhang X; Jia G, Shen Y, Zhu M. The Silurian-Devonian boundary in East Yunnan (South China) and the minimum constraint for the lungfish-tetrapod split. Science China Earth Sciences. 2021;64(10)1784-97.  [link.springer.com]

Lu J, Zhu M, Long JA, Zhao W, Senden TJ, Jia L, Qiao T. The earliest known stem-tetrapod from the Lower Devonian of China. Nature communications. 2012;3(1)1-7.   [nature.com]

Müller J, Reisz RR. Four wellconstrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays. 2005;27(10)1069-75.  [onlinelibrary.wiley.com]

Swartz B. A marine stem-tetrapod from the Devonian of Western North America. PLOS ONE. 2012;7(3)e33683.  [ncbi.nlm.nih.gov]

Witzmann F, Schoch RR. A megalichthyid sarcopterygian fish from the Lower Permian (Autunian) of the Saar-Nahe Basin, Germany. Geobios. 2012;45(2)241-8.  [academia.edu]

Clement AM, Cloutier R, Lu J, Perilli E, Maksimenko A, Long J. A fresh look at Cladarosymblema narrienense, a tetrapodomorph fish (Sarcopterygii: Megalichthyidae) from the Carboniferous of Australia, illuminated via X-ray tomography. PeerJ. 2021;9:e12597. [peerj.com]

Wellburn ED. On the Genus Megalichthys, Agassiz: Its History, Systematic Position, and Structure. In Proceedings of the Yorkshire Geological and Polytechnic Society. 1900;14(1)52-71. [scholar.archive.org]

Niedźwiedzki G, Szrek P, Narkiewicz K, Narkiewicz M, Ahlberg PE. Tetrapod trackways from the early Middle Devonian period of Poland. Nature. 2010;463(7277)43-8.  [academia.edu]

Boisvert CA. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature. 2005;438(7071)1145-7. [academia.edu]

Johanson Z, Ahlberg PE. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2001;92(1):43-74. [academia.edu]

Whiteaves JF. On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, in the Province of Quebec. Annals and Magazine of Natural History. 1881;8(44)159–62.   [tandfonline.com]

Andrews SM, Westoll TS. IX - The postcranial skeleton of Eusthenopteron foordi Whiteaves. Transactions of the Royal Society of Edinburgh. 1970;68(9)207-329.  [cambridge.org]

Clément G. Large Tristichopteridae (Sarcopterygii, Tetrapodomorpha) from the Late Famennian Evieux Formation of Belgium. Palaeontology. 2002;45(3)577-93.             [onlinelibrary.wiley.com]

Blom H, Clack JA, Ahlberg PE, Friedman M. Devonian vertebrates from East Greenland: a review of faunal composition and distribution. Geodiversitas. 2007;29(1)119-41. [academia.edu]

Stewart TA, Lemberg JB, Daly A, Daeschler EB, Shubin NH. A new elpistostegalian from the Late Devonian of the Canadian Arctic. Nature. 2022;608(7923)563-8. [nature.com

Flammang BE, Suvarnaraksha A, Markiewicz J, Soares D. Tetrapod-like pelvic girdle in a walking cavefish. Scientific reports. 2016;6(1)1-8.  [nature.com]

Clack JA. Gaining Ground. Indiana: Indiana University Press, 2012. [books.google]


                                                                     

The original text in Russian is available at the link: Позвоночные животные

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

ChatGPT. Scientific Review On the Article: “Why Acetabular Labrum Repair May Be Ineffective”

  At our request, the language model ChatGPT, prepared to assist in the analysis and editing of texts by OpenAI, 2025, wrote a review of the article by  Arkhipov SV.   Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint   ([Ru]  Архипов СВ .  Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе.  06.04.2025 ).  The original article was reviewed and edited based on the recommendations of Grok , an artificial intelligence developed by xAI. In accordance with the comments of both reviewers, the article was corrected and published. Below is the original text of the review by ChatGPT: Scientific Review and Critical Commentary On the article: “Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint” Author: S.V. Arkhipov, Independent Researcher, Joensuu, Finland I. Scientific...

2025ArkhipovSV. Human Children

  The monograph  Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. [In Russian].  The monograph dates the writing of the Book of Genesis and the events depicted in it, as well as refutes the authorship of Moses. I offer mutually beneficial cooperation (50/50) in literary translation into English or native language. Proofreading of machine translation and cooperation in editing are expected.  Requirements for co-author: 1. Native speaker 2. Experience as a writer. E-mail: archipovsv(&)gmail.com Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition...

2025ArkhipovSV. Why Acetabular Labrum Repair May Be Ineffective

  Original in Russian is available at the link:   С.В. Архипова «Почему восстановление вертлужной губы может быть неэффективно?» (06.04.2025) , below is a machine translation edited by a non-native speaker (version dated 06/04/2025). Thematic Internet Journal About round ligament of femur April 2025 WHY ACETABULAR LABRUM REPAIR MAY BE INEFFECTIVE?: A NOTE ON THE MYSTERIOUS "DARK MATTER" OF THE HIP JOINT S.V. Arkhipov, Independent Researcher, Joensuu, Finland Abstract Acetabular labrum repair and reconstruction do not prevent hip joint instability during gait and the development of osteoarthritis in the case of an elongated ligamentum capitis femoris. This conclusion is based on mathematical calculations and analysis of experiments conducted on a mechanical hip joint model. Keywords : arthroscopy, hip joint, acetabular labrum, ligamentum capitis femoris, ligamentum teres, ligament of head of femur , reconstruction, repair Introduction Nearly 80% of primary hip ar...

1836WeberW_WeberE

  We present fragments from the book that laid the foundation of biomechanics of the hip joint considering the ligamentum capitis femoris (LCF). The authors experimentally proved that this structure is situated in the frontal plane when the body is in a vertical position. Analysis of observations showed that when standing on one leg, the LCF and the anterior portion of the iliofemoral ligament (pars descendens lig. iliofemoralis) are stretched and hold the pelvis. These ligaments counteract the weight of the body along with the head of the femur on the same side. The insight of the Weber brothers was later developed in the works of H. von Meyer (1856) , W. Turner (1857) , and W. Savory(1874) . Weber W, Weber E. Mechanik der menschlichen Gehwerkzeuge: eine anatomisch-physiologische Untersuchung. Gottingen: Dietrichsche Buchhandlung, 1836. [fragment s ] Quote p. 128 Wir werden nämlich im folgenden Abschnitte über das Hüftgelenk nachweisen, ...

Grok. Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?".

  At our request, Grok, artificial intelligence developed by xAI, wrote a review of the article by Arkhipov SV. Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint ([Ru]  Архипов СВ . Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе. 06.04.2025 ). In accordance with the comments, the article was revised and sent for re-review to the ChatGPT language model prepared to assist in the analysis and editing of texts (OpenAI, 2025).  Below is the original text of the review by Grok: Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?: A Note on the Mysterious 'Dark Matter' of the Hip Joint". This review focuses on the analysis of argumentation, as requested. The author asserts that restoration of the acetabular labrum fails to prevent hip joint instability and osteoarthritis when the ligame...

BLOG CONTENT

  T he ligament of the head of femur or ligamentum capitis femoris (LCF) is the key to a graceful gait and understanding the causes of hip joint diseases. We present promising scientific knowledge necessary for preserving health,  to create new implants and techniques  of treating degenerative  pathology and damage of the hip joint. Project objective : preserving a normal gait and quality of life, helping to study of hip joint biomechanics, developing effective treatments for its diseases and injuries. In translating to English, the author is assisted by ChatGPT (version 3.5)  and the Google Translate service .  We're sorry for any flaws in the syntax. The meaning makes up for the imperfections!     TABLES OF CONTENTS      ANCIENT MENTIONS  (Early literary evidence and early authors... ) 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 10...

1922LeeserI

  A fragment of the Book of Genesis tells about the journey of the family of Patriarch Jacob from Charan to Canaan (Gen. 31:1 – 33:20). The translation into English from of the Masoretic Hebrew text of the Torah was done by Isaac Leeser ( 1922 LeeserI ). «Most scholars agree that the texts now found in Genesis began to be written down sometime after the establishment of the monarchy in Israel in the tenth century BCE» (1992SuggsMJ_MuellerJR). A selected passage from an ancient work mentions for the first time in history the injury of the ligamentum capitis femoris (LCF) of a person is mentioned (Gen. 32:26,33). In the original Hebrew source this anatomical element is referred to as «גיד» (gheed, gid)  ( Bereshit 32:33 ;  1923, 2004PreussJ;  2019ArkhipovSV_SkvortsovDV ;  2020ArkhipovSV_ProlyginaIV ).  This term was recorded in writing long before Hippocrates of Kos (V-IV cent. BCE) who used the concept «νεῦρον» to designate LCF (1844LittréÉ). It is not known...

ILIOTIBIAL TRACT & LCF

  ILIOTIBIAL TRACT & LCF There is an opinion that the iliotibial tract, like the ligamentum capitis femoris (LCF), provides pressing of the acetabulum to the lower surface of the femoral head. I think that this is not true. The tract is located above and lateral to the center of rotation of the hip joint. Its force vector, like the force vector of the abductor group of muscles, presses the acetabulum to the upper part of the femoral head, which increases the load on it. The ligamentum capitis femoris acts in the opposite direction. Below is a diagram for a single-support position. #ligamentum_teres   #hip   #biomechanics   #ligamentum_capitis_femoris Publication in the facebook group 04/12/2025.                                                                              ...

Pathological Changes of LCF

  Version : 20240419 RESULT OF PATHOLOGICAL CHANGE OF LCF 1. Absence of detectable changes 2. Elongation 3. Shortening 4. Thinning (hypotrophy) 5. Thickening (hypertrophy) 6. Disappearance 7. Impingement (within the joint space) 8. Compression (in the fossa of the acetabulum) 9. Marginal defect 10. Distally detached fragment 11. Proximally detached fragment 12. Two-fragments injury (in the midsection) 13. Avulsion-fracture of the distal end 14. Avulsion-fracture of the proximal end 15. Subsynovial avulsion of the distal end 16. Subsynovial avulsion of the proximal end 17. Synovial sheath 18. Partial distal end detachment 19. Partial proximal end detachment 20. Partial subsynovial injury 21. Complete subsynovial injury 22. Combination of pathological changes   PATHOMORPHOLOGICAL CHANGES OF LCF 1. Edema 2. Dystrophic change in the stroma 3. Total dystrophic change 4. Metaplasia 5. Sclerosis 6. Hyalinosis 7. Fibrosis ...

Load on LCF

  Version : 20240419 Magnitude of LCF Load 1. Optimally loaded 2. Partially loaded 3. Unloaded 4. Excessively loaded (overloaded)   Reasons for Increased Load on LCF 1. Increase in effective body weight 2. Decrease in the lever arm of the abductor muscle group 3. Decrease in the strength of the abductor muscle group 4. Increase in the lever arm of body weight 5. The presence of a dynamic component (walking, running, jumping)   Reasons for Decreased Load on LCF 1. Decrease in body weight 2. Increase in the lever arm of the abductor muscle group 3. Increase in the strength of the abductor muscle group 4. Decrease in the lever arm of body weight 5. Absence of dynamic component (walking, running, jumping)   Keywords: ligamentum capitis femoris, ligament of head of femur , round ligament, ligamentum teres, classification, functions, dysfunction, l oad                       ...