Skip to main content

Vertebrates


VERTEBRATES


According to the molecular clock, a specific method for dating phylogenetic events, vertebrates (Vertebrata) separated from arthropods (Arthropoda) 976±97 Ma (2004HedgesSB_ShoeJL). The latter began to dominate in species diversity with the Cambrian burst of radiation, which occurred 520 Ma (2010EdgecombeGD). This ratio in the fauna of the Earth is still preserved.

Approximately 525 Ma, the phylum Chordates separated from the group of bilaterally symmetrical animals (1995ChenJY_ZhouGQ). In turn, the evolution of chordate organisms led to the formation of the first vertebrates at least 500 Ma, from which the jawed mouths 450-400 Ma descended, becoming the ancestors of the placoderms or "armored" fish (Placodermi) (1979НаумовНП_КарташевНН).


Sculptural reconstruction of the placoderm Coccosteus from the order Arthrodires, Middle Devonian, 393.3-382.7 Ma; exposition of the Orlov Paleontological Museum (Moscow); photo by the author.

The first cartilaginous fish (Chondrichthyes) appeared 430 Ma (2001MärssT_GagnierPY). Bony fish (Osteichthyes) descended from cartilaginous fish about 423 Ma (2004ZhuM_AhlbergPE). The earliest fossil of a lobe-finned fish (Sarcopterygii) – Osteichthyes is about 418 million years old (1998YuX).


Cast of the fossil Holoptychius jarviki (clade Sarcopterygii, order Proleptiformes), late Devonian, 382.7-358.9 Ma; Exposition of the Orlov Paleontological Museum (Moscow); photo by the author.


Cast of the living species Latimeria chalumnae (clade Sarcopterygii, order Actinistia); exposition of the Orlov Paleontological Museum (Moscow), photo by the author.


One of the "offshoots” of the lobe-finned fish branch is the lungfish (Dipnoi), the fossil record of which falls on the early (lower) Devonian period, that is, on the interval of 419.2-393.3 Ma (2017KempA_GuinotG; 2023CohenKM_CarN). Lungfish became the immediate ancestors of land animal species (2001CampbellKSW_BarwickRE). According to updated data, the separation of lungfish and tetrapods (Tetrapod) occurred 426.5-416.0 Ma (2021ZhaoW_ZhuM). The clade of tetrapods (Tetrapodomorpha) began to form approximately 409 Ma. The oldest representative of the stem tetrapods Tungsenia, dates back to the Prague stage (410.8-407.6 Ma) of the Devonian period (2012LuJ_QiaoT; 2023CohenKM_CarN).


Model of the osteolepiform rhipidistia Osteolepis (clade Tetrapodomorpha) of the Devonian period; exposition of the Orlov Paleontological Museum (Moscow), photo by the author.

Previously, the oldest tetrapodomorph was considered to be the fish Kenichthys, which flourished 395 Ma (2004ZhuM_AhlbergP; 2005MüllerJ_ReiszRR). Perhaps the animal had paired pectoral and pelvic fins - the precursors of legs. Unfortunately, this is not known for sure.

The tetrapodomorph sarcopterygian Tinirau clackae was found in a layer dating to the late Givetian stage, or 387.7-382.7 Ma (2023CohenKM_CarN). The pelvis of this species was articulated caudally with the femur via the acetabulum. Its shape was elliptical, elongated, with a height/length ratio of 0.42 (2012SwartzB).


Complete restoration of Tinirau clackae (from 2012SwartzB: Fig. 2B).



Articular fossae and pelvic limbs of some stem tetrapods (from 2012SwartzB: Fig. 5).


The Megalichthyids clade of sarcopterygian tetrapodomorph fishes appeared in the middle or late Devonian, i.e. 393.3-358.9 Ma, and existed until the Lower Permian, or 298.9 Ma (2012WitzmannF_SchochRR; 2021ClementAM_LongJ; 2023CohenKM_CarN). In Megalichthys, half of the pelvis was probably an elongated cartilaginous element covered with a layer of dense bone with a concave-truncated distal end (1900WellburnED). This concavity is the acetabulum, was connected with the bones of the pelvic fin.


Reconstruction of the appearance of Megalichthyids (from 1900WellburnED:Pl.XIII).


Pelvis and pelvic fin of Megalichthyids; Pel. - the pelvis of an animal (from 1900WellburnED:Pl.XVII.E).


The next stage of the transition from fish to tetrapods was the formation of the Elpistostegalia clade. The most ancient fish of the order - Panderichthys is dated to 385.3 Ma (2010NiedźwiedzkiG_AhlbergPE). These animals had two pairs of limbs: front and back, resembling fins. The skeleton of the back fins contained femur articulated with the pelvis and not directly connected to the spine. This fish moved using its front fins and body bends. The acetabulum of Panderichthys was oriented backwards, which made it impossible to push off with the pelvic fins, which had an insignificant supporting role (2005BoisvertCA). As is evident from the reconstruction, the femur of the mentioned animal is flattened, which predetermines the elliptical shape of the acetabulum. Z. Johanson, P.E. Ahlberg (2001) analyzed the pelvic bones of an early representative of tetrapodomorph fishes of the rhizodontid order Gooloogongia loomesi, which lived in the Late Devonian (382.7-358.9 Ma) and found a well-defined acetabulum. At the same time, the authors noted the absence of sacral ribs and ischial bones in this species. The acetabulum of Gooloogongia loomesi faces backwards, is a large, strongly concave structure associated with the proximal parts of the ilium and pubic processes. This depression on the pelvic surface lacks a developed edge, and in the posterior section it smoothly merges with the posteroventral surface of the ramus of the ilium (2001JohansonZ_AhlbergPE:Fig. 12).

A.H. Foord described in 1880 one of the early tetrapodomorphs Eusthenopteron foordi (genus Eusthenopteron, family Tristichopteridae) (1881WhiteavesJF). A review of the pelvis of a specimen of Eusthenopteron foordi from the Faranian stage of the Upper Devonian (382.7-372.2 Ma) is known, which had two halves connected into a single structure, possibly by a cartilaginous element. Each half of the pelvis is subdivided into the iliac and pubic parts, forming the acetabulum. It faces caudally and downwards, is shallow, concave, oval-oblong, and must have been covered with cartilage during life. At the edge of the acetabulum are two large processes to which muscles were apparently attached (1970 AndrewsSM_WestollTS). It is possible that the proximal parts of the pubofemoral and iliofemoral ligaments were attached to them.


Reconstruction of the appearance of Eusthenodon tresnensis (exhibition of the Orlov Paleontological Museum, Moscow); clade Eotetrapodiformes, family Tristichopteridae, genus Eusthenodon flourished in the period 383-359 Ma (2002 Clément G; 2007 Blom H_Friedman M), photo by the author.


Pelvis of the fish Eusthenopteron; ac. – acetabular (from 1970 Andrews SM_Westoll TS; Fig. 14).



Recently, a new finned elpistostegalian Qikiqtania wakei from the late Devonian period (382.7-358.9 Ma) was discovered, which cannot yet be classified as a tetrapod (2022 Stewart TA_Shubin NH; 2023 Cohen KM_CarN). The pelvis and the hind fins of the specimen found were not preserved, so it is not possible to clarify the shape of the acetabulum and the stereotype of movement. At the same time, it is known that fish, even in the absence of finger-like limbs, are able to move by walking movements using fins and rotating the appendicular girdles relative to the long axis of the body (2016FlammangBE_SoaresD). We believe that Qikiqtania wakei could move along the bottom and shallow water in a similar manner.

It was previously believed that the diversification of tetrapodomorphs occurred in the following order of taxa appearance: Eusthenopteron, Panderichthys, Elpistostege, Tiktaalik, Elginerpeton, Ventastega, Acanthostega and Ichthyostega (2007ClackJA). Currently, the development of tetrapodomorphs looks like this: Tinirau, Eusthenopteron, Megalichthys, Panderichthys, Qikiqtania, Tiktaalik, Elpistostege, Parmastega, Ventastega, Acanthostega Elginerpeton, Ymeria, Ichthyostega (2022 StewartTA_ShubinNH).

We analyzed the shape of the femur and acetabulum in ancient fish species before Tiktaalik. No signs of an acetabular fossa or a fossa of the femoral head were noted in this group of the most ancient vertebrates.

We have analyzed the shape of the femur and acetabulum in ancient fish species before Tiktaalik. No signs of an acetabular fossa or a femoral head fossa were noted in this group of the oldest vertebrates. Therefore, the above-mentioned ancestors of tetrapods did not yet have a ligamentum capitis femoris (LCF) attached directly to the bone.

References

Hedges SB, Blair JE, Venturi ML, Shoe JL. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC evolutionary biology. 2004;4(1)1-9. [link.springer.com]

Edgecombe GD. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure & Development. 2010;39(2-3)74-87. [sciencedirect.com

Chen JY, Dzik J, Edgecombe GD, Ramsköld L, Zhou GQ. A possible Early Cambrian chordate. Nature. 1995;377(6551)720-2. [nature.com]

Наумов НПКарташев ННЗоология позвоночныхЧ. 1. Низшие хордовые, бесчелюстные, рыбы, земноводные: Учебник для биолог. спец. ун-тов. Москва: Высшая школа, 1979.  [batrachos.com]

Märss T, Gagnier PY. A new chondrichthyan from the Wenlock, lower Silurian, of Baillie-Hamilton Island, the Canadian Arctic. Journal of Vertebrate Paleontology. 2001;21(4):693-701.  [tandfonline.com]

Zhu M, Ahlberg PE. The origin of the internal nostril of tetrapods. Nature. 2004;432(7013)94-7. [academia.edu]

Yu X. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. Journal of Vertebrate Paleontology. 1998;18(2)261-74.  [tandfonline.com]

Kemp A, Cavin L, Guinot G. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;471:209-19.  [sciencedirect.com]

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Campbell KSW, Barwick RE. Diabolepis and its relationship to the Dipnoi. Journal of Vertebrate Paleontology. 2001;21(2)227-41. [tandfonline.com]

Zhao W, Zhang X; Jia G, Shen Y, Zhu M. The Silurian-Devonian boundary in East Yunnan (South China) and the minimum constraint for the lungfish-tetrapod split. Science China Earth Sciences. 2021;64(10)1784-97.  [link.springer.com]

Lu J, Zhu M, Long JA, Zhao W, Senden TJ, Jia L, Qiao T. The earliest known stem-tetrapod from the Lower Devonian of China. Nature communications. 2012;3(1)1-7.   [nature.com]

Müller J, Reisz RR. Four wellconstrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays. 2005;27(10)1069-75.  [onlinelibrary.wiley.com]

Swartz B. A marine stem-tetrapod from the Devonian of Western North America. PLOS ONE. 2012;7(3)e33683.  [ncbi.nlm.nih.gov]

Witzmann F, Schoch RR. A megalichthyid sarcopterygian fish from the Lower Permian (Autunian) of the Saar-Nahe Basin, Germany. Geobios. 2012;45(2)241-8.  [academia.edu]

Clement AM, Cloutier R, Lu J, Perilli E, Maksimenko A, Long J. A fresh look at Cladarosymblema narrienense, a tetrapodomorph fish (Sarcopterygii: Megalichthyidae) from the Carboniferous of Australia, illuminated via X-ray tomography. PeerJ. 2021;9:e12597. [peerj.com]

Wellburn ED. On the Genus Megalichthys, Agassiz: Its History, Systematic Position, and Structure. In Proceedings of the Yorkshire Geological and Polytechnic Society. 1900;14(1)52-71. [scholar.archive.org]

Niedźwiedzki G, Szrek P, Narkiewicz K, Narkiewicz M, Ahlberg PE. Tetrapod trackways from the early Middle Devonian period of Poland. Nature. 2010;463(7277)43-8.  [academia.edu]

Boisvert CA. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature. 2005;438(7071)1145-7. [academia.edu]

Johanson Z, Ahlberg PE. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodomorpha) from East Gondwana. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2001;92(1):43-74. [academia.edu]

Whiteaves JF. On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, in the Province of Quebec. Annals and Magazine of Natural History. 1881;8(44)159–62.   [tandfonline.com]

Andrews SM, Westoll TS. IX - The postcranial skeleton of Eusthenopteron foordi Whiteaves. Transactions of the Royal Society of Edinburgh. 1970;68(9)207-329.  [cambridge.org]

Clément G. Large Tristichopteridae (Sarcopterygii, Tetrapodomorpha) from the Late Famennian Evieux Formation of Belgium. Palaeontology. 2002;45(3)577-93.             [onlinelibrary.wiley.com]

Blom H, Clack JA, Ahlberg PE, Friedman M. Devonian vertebrates from East Greenland: a review of faunal composition and distribution. Geodiversitas. 2007;29(1)119-41. [academia.edu]

Stewart TA, Lemberg JB, Daly A, Daeschler EB, Shubin NH. A new elpistostegalian from the Late Devonian of the Canadian Arctic. Nature. 2022;608(7923)563-8. [nature.com

Flammang BE, Suvarnaraksha A, Markiewicz J, Soares D. Tetrapod-like pelvic girdle in a walking cavefish. Scientific reports. 2016;6(1)1-8.  [nature.com]

Clack JA. Gaining Ground. Indiana: Indiana University Press, 2012. [books.google]


                                                                     

The original text in Russian is available at the link: Позвоночные животные

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

2018YoussefAO

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Youssef AO. Medial approach open reduction with ligamentum teres partial excision and plication for the management of congenital hip dislocation (2018). The article describes a method for transposition of the proximal attachment of the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2018YoussefAO . [ii]   Original text Abstract Because of the known tendency for early redislocation following open reduction, we developed surgical methods for shortening the ligamentum teres to improve immediate postoperative stability when performing medial approach open reduction (MAOR) for the management of developmental dysplasia of the hip. Between 2004 and 2014, 32 patients w...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

LCF in 2025 (December)

  LCF in 2025 ( December)   (Quotes from articles and books published in  December  2025 mentioning the ligamentum capitis femoris)   Sarassa, C., Aristizabal, S., Mejía, R., García, J. J., Quintero, D., & Herrera, A. M. (2025). Intraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance Stability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes. Journal of Pediatric Orthopaedics , 10-1097.   [i]      journals.lww.com   Kampouridis, P., Svorligkou, G., Spassov, N., & Böhme, M. (2025). Postcranial anatomy of the Late Miocene Eurasian hornless rhinocerotid Chilotherium. PLoS One , 20 (12), e0336590.     [ii]      journals.plos.org   Burdette, T. N., Hsiou, C. L., McDonough, S. P., Pell, S., Ayers, J., Divers, T. J., & Delvescovo, B. Sidewinder syndrome associated with complete rupture of the ligamentum capitis ossis femoris in a horse. Eq...

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

Full access to the PDF version of the book: HUMAN CHILDREN

  Full access to the PDF version of the book is now available: Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. (In Russian)].  Google Play  ,  Google Book , drive.google.com   ,   kruglayasvyazka.blogspot.com   [Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Эссе, снабженное ссылками на интерактивный материал. 2-е изд. перераб. и доп. Йоэнсуу : Издание Автора , 2025.]   Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition. He supplemented the co-author's family legends, retellings of halluc...

Key Role of the LCF

  In the experiments conducted on the pelvis-femur-muscle-ligaments model, we found that when the contralateral pelvic drop occurs, the ligament of the head of femur become maximally tense; simultaneously, there is relaxation and lengthening of the gluteus medius muscle; the pelvis spontaneously rotates towards the stance limb (forward), and the load on the hip joint decreases. Thanks to the functioning of the ligament of the head of femur the walking is smooth, rhythmic, and energy-efficient. Track Music:  Blue Dot Sessions , Vittoro (CC BY-NC 4.0 DEED / fragment)  "Take care of the ligament of the head of femur for yourself and your neighbor!" .                                                                       . keywords: ligamentum capitis femoris, ligament of head of femur, ligamentum te...

FACEBOOK

  FACEBOOK (publications in the group LIGAMENTUM CAPITIS FEMORIS and this social network) A FACEBOOK section has been created (About publications in this social network). FACEBOOK GROUP  On creating a group.   OLDEST SYNONYMS  Post in Facebook groups. Planar models of the hip joint   Post in Facebook groups. The loading acting onthe femoral head   Post in Facebook groups. Visualization of the LCF by the medial approach   Post in Facebook groups. A FORCE THAT HELPS ROTATE THE PELVIS   Post in Facebook groups.  FIRST EXPERIMENTS ON A MECHANICAL MODEL   Post in Facebook groups. HIP JOINT MODEL WITH LCF ANALOGUE   Post in Facebook groups. EXTERNAL LIGAMENTS & LCF   Post in Facebook groups.  BIOMECHANICS OF THE HIP JOINT WITHOUT LCF   Post in Facebook groups. F. Pauwels vis-à-vis S. Arkhipov ☺   Post in Facebook groups. TENSION OF THE LIGAMENTUM CAPITIS FEMORIS   Post in Facebook groups. Thompson's p...