Skip to main content

Primates

 

Primates: Prosimii & Anthropoidea


In the Late Devonian, or 367.5 Ma, the Amniota branch arose from amphibians (2011PyronRA). In that cohort, synapsids (Synapsid) initially emerged, followed by sauropsida (Sauropsida), and then reptiles (Reptilia) (1995LaurinM_ReiszRR). The first representatives of the reptile-like (Reptilomorpha) tetrapods colonized the continents 363-290 Ma (1995LundbergJG). 

The earliest synapsid is recognized as Asaphestera platyris from the early Pennsylvanian subperiod, which lasted from 323.2 ± 0.4 to 315.2 ± 0.2 Ma (2020MannA_AndersonJS; 2023CohenKM_CarN). According to molecular clock data, mammals (Mammalia), also called animals (Theria), separated 310 Ma from the lineage that extended to reptiles (2004HedgesSB_ShoeJL). The first animals that suckled their young with milk stood out among the primitive synapsids - the ancestors of cynodonts (Cynodontia) (2013VaughanTA_CzaplewskiNJ). The oldest mammal Liaoconodon hui was found in deposits of the early Cretaceous period, that is, it lived 145.0-100.5 Ma (2011MengJ_LiC; 2023CohenKM_CarN). 

The molecular clock «shows»: the superorder Euarchontoglires separated in the class of mammals 88.8 Ma (2007JaneckaJE_MurphyWJ). This systematic unit, also called superprimates (Supraprimates), is subdivided into: the grandorder Glires with the orders Lagomorpha and Rodents; the grandorder Euarchonta with the orders Scadentia and the worldorder Primates (Primatomorpha), in which the orders Dermoptera and Primates («Leaders of Creation») are distinguished (2017EsselstynJA_FairclothBC).


Light-fronted spider monkey; exhibit of the Zoological Museum of Moscow State University, photo by the author.

Molecular evidence suggests that euarchonts evolved 87.9 Ma, primates 86.2 Ma, great apes 79.6 Ma, and tree shrews 63.4 Ma (2007JaneckaJE_MurphyWJ). According to the fossil record, placental mammals diversified about 66 Ma, and the earliest plesiadapiform primate lived 65 Ma (2015ChesterSG_ClemensWA). The oldest remains of a definite primate, Teilhardina asiatica, were found in soil strata of the early Eocene, or 55.5 million years old (2006SmithT_GingerichPD; 2023CohenKM_CarN). 

Apes emerged in the animal kingdom approximately 50 Ma (2009SrivastavaRP). One of the original hominoids, Morotopithecus bishop, flourished in Africa 20.6 Ma (1997GeboDL_PilbeamD). Its close «relative» primate Afropithecus lived 17.5-17.0 Ma (1997LeakeyM_WalkerA). According to molecular estimates, orangutans differentiated 19.3-15.7 Ma, gorillas - 9.7-7.6 Ma, and chimpanzees - 6.5-5.8 Ma (2011IsrafilH_SteiperME). Evolutionists believe that gibbons separated 29.62-20.68 Ma, orangutans - 18.42-12.53 Ma, gorillas - 9.89-6.62 Ma, common chimpanzees - 6.52-4.77 Ma, pygmy chimpanzees (bonobos) - 5.85-4.35 Ma (2022PoszewieckaB_GambinA). 

Currently, the order of primates includes 190 species, placed in the suborder lower primates (Prosimii) with the families: tupaiids (Tupaiidae), lorises (Lorisidae), lemurs (Lemuridae); and in the suborder of higher primates (Anthropoidea) with the families: prehensile-tailed monkeys or capuchins (Cebidae), marmosets (Cercopithectidae), great apes (Pongidae) and hominids (Hominidae) with the only species, Homo sapiens (1979NaumovNP_KartashevNN). In Africa and Asia, seven species of great apes of three genera still survive: orangutan (Pongo), gorilla (Gorilla) and chimpanzee (Pan) (2005WilsonDE_ReederDM). Today, orangutans and gorillas make up the subfamily hominins (Homininae), and humans and chimpanzees are united in the tribe Hominini, as having descended from a common ancestor (2001GrovesCP).

The presence of ligamentum capitis femoris (LCF) in an animal can be determined based on the analysis of the acetabulum and proximal femur. On the femur, these are the fossa of the femoral head, the groove of the femoral head, the tuberosity or cleft on the femoral head, and the marginal defect of the articular surface of the femoral head. In the pelvic area, the presence of LCF is indicated by: the acetabular notch, the acetabular fossa, the opening of the acetabular floor, and irregularities on the articular surface of the acetabulum.

As we have found out, the topic of the presence of LCF in great apes first interested researchers in the 19th century. There were cases of the absence of this structure and there were heated discussions on this issue. R. Owen (1835) discovered a depression on the head of the femur for LCF in chimpanzees, but did not find any signs of it in the orangutan. G. Mivart (1869) found a fossa of the head of the femur only in one orangutan skeleton, and also sometimes did not find traces of LCF in gorillas. E. Moser (1893) notes that LCF is usually absent in the orangutan. A morphological study by E.S. Crelin (1988) of an adult male orangutan allowed visualizing the LCF attached to the head of the femur.

It is now established that all great apes have LCF. A clear sign of its presence and functioning during life is a distinct acetabulum.


Gorilla. Left acetabulum (external view); 3-D model of the pelvis of an adult female gorilla (9.8 years old) from Barcelona Zoo. [sketchfab.com]

Chimpanzee. Left acetabulum (external view), pelvis of an adult chimpanzee; exposition of the Orlov Paleontological Museum (Moscow), photo by the author.

Orangutan. Right acetabulum (external view); 3-D model of the femur of an adult male Bornean orangutan from Barcelona Zoo. [sketchfab.com]


In some cases, LCF leaves a trace of its attachment directly on the articular surface of the femoral head.


Gorilla. Proximal part of the left femur (posterior view); 3-D model of the femur of an adult female gorilla (9.8 years old) from Barcelona Zoo. [sketchfab.com]

Chimpanzee. Proximal section of the right femur (posterior view); 3-D model of the femur of a chimpanzee from the teaching collection of the Archaeology Research Laboratories of the University of North Carolina at Chapel Hill (model by Steve Davis). [sketchfab.com]


Sometimes the distal attachment site is the edge of the head of the femur.


Orangutan. Proximal section of the right femur (posterior view); 3-D model of the femur of an adult male Bornean orangutan from the Barcelona Zoo. [sketchfab.com]


Gorilla. Left pelvic bone and proximal section of the femur (abduction, supination); exhibit of the Zoological Museum of Moscow State University, photo by the author.

 

References

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Pyron RA. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic biology. 2011;60(4)466-81. [academic.oup.com]

Laurin M, Reisz RR. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society. 1995;113(2)165-223. [academia.edu]

Lundberg JG. Chordata. The Tree of Life Web Project. Version 1 January 1995 (under construction). [tolweb.org]

Mann A, Gee BM, Pardo JD, Marjanović D, Adams GR, Calthorpe AS, Maddin HC, Anderson JS. Reassessment of historic ‘microsaurs’ from Joggins, Nova Scotia, reveals hidden diversity in the earliest amniote ecosystem. Papers in Palaeontology. 2020;6(4)605-25. [researchgate.net]

Hedges SB, Blair JE, Venturi ML, Shoe JL. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC evolutionary biology. 2004;4(1)1-9. [link.springer.com]

Vaughan TA, Ryan JM, Czaplewski NJ. Mammalogy. Sudbury: Jones & Bartlett Learning, 2013. [books.google]

Meng J, Wang Y, Li C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature. 2011;472(7342)181-5. [researchgate.net]

Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ. Molecular and genomic data identify the closest living relative of primates. Science. 2007;318(5851)792-4. [epository.si.edu]

Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biology and Evolution. 2017;9(9)2308-21. [scholar.google]

Chester SG, Bloch JI, Boyer DM, Clemens WA. Oldest known euarchontan tarsals and affinities of Paleocene Purgatorius to Primates. Proceedings of the National Academy of Sciences. 2015;112(5)1487-92. [scholar.google]

Smith T, Rose KD, Gingerich PD. Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA. 2006;103:11223-7. [scholar.google]

Srivastava RP. Morphology of the Primates and Human Evolution. New Delhi: PHI Learning Pvt. Ltd., 2009. [books.google]

Gebo DL, MacLatchy L, Kityo R, Deino A, Kingston J, Pilbeam D. A hominoid genus from the early Miocene of Uganda. Science. 1997;276:401-4. [researchgate.net]

Leakey M, Walker A. Afropithecus: function and phylogeny. In: Begun DR, Ward CV, Rose MD (Eds). Function, phylogeny and fossils: Miocene hominoid evolution and adaptations. New York: Plenum, 1997:225-39. [link.springer.com]

Israfil H, Zehr SM, Mootnick AR, Ruvolo M, Steiper ME. Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Molecular Phylogenetics and Evolution. 2011;58(3)447-55. [ncbi.nlm.nih.gov]

Poszewiecka B, Gogolewski K, Stankiewicz P, Gambin A. Revised time estimation of the ancestral human chromosome 2 fusion. BMC genomics. 2022;23(6)1-16. [link.springer.com]

Наумов НП, Карташев НН. Зоология позвоночных. Ч. 2. Пресмыкающиеся, птицы, млекопитающие: Учебник для биолог. спец. ун-тов. Москва: Высшая школа, 1979. [chembaby.ru]

Wilson DE, Reeder DM (Eds). Mammal species of the world: a taxonomic and geographic reference. Vol. 1. Baltimore: Johns Hopkins University Press, 2005. [books.google]

Groves CP. Towards a taxonomy of the Hominidae. In: Humanity from African Naissance to Coming Millennia. In: Tobias PV, Raath MA, Moggi-Cecchi J, Doyle GA (Eds). Colloquia in Human biology and Palaeonthropology. Firenze: Firenze University Press, 2001:291-7. [library.oapen.org]

Crelin ES. Ligament of the head of the femur in the orangutan and indian elephant.  The Yale J Biol Med. 1988;61(5)383-8.  [ncbi.nlm.nih.govncbi.nlm.nih.gov.pdf

Owen R. On the osteology of the Chimpanzee and Orang. Transactions of the Zoological Society of London. Vol. I. London, 1835:343-379. [books.google

Mivart G. Contributions towards a more complete knowledge of the Skeleton of the Primates. Part I. The Appendicular Skeleton of Simia. Transact. Zool. Soc. 1869;6:175-226. [biodiversitylibrary.org

Moser E. Ueber das Ligamentum teres des Hüftgelenks. Morphologische Arbeiten. 1893;2(1)36-92. [books.google , jstor.org]


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, doctrine, animals, monkey, homo


                                                                     

The original text in Russian is available at the link: Primates

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

1914JonesFW_MorrisH

  We are publishing a chapter from the fifth edition of «Morris's Human Anatomy» (1914). A significant portion of it is dedicated to the ligamentum capitis femoris (LCF). The original text has been edited by Wood Jones. Particularly notable are the illustrations depicting the LCF. Some of them are improved drawings by the first author ( 1879MorrisH ).   Quote pp. 276-284 1. THE HIP-JOINT Class. — Diarthrosis. Subdivision. — Enarthrodia. The hip is the most typical example of a ball-and-socket joint in the body, the round head of the femur being received into the cup-shaped cavity of the acetabulum. Both articular surfaces are coated with cartilage, that covering the head of the femur being thicker above where it has to bear the weight of the body, and thinning out to a mere edge below; the pit for the ligamentum teres is the only part uncoated, but the cartilage is somewhat heaped up around its margin. Covering the acetabulum, the cartilage is horseshoe-shaped, a...

LCF in 2025 (September)

  LCF in 2025 ( September )   (Quotes from articles and books published in  September  2025 mentioning the ligamentum capitis femoris)   Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).   01 September 2025. PREPRINT (Version 1)  [i]   researchsquare.com   Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.   [ii]   link.springer.com   Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis , 37 (3), 171-177.    [iii]    pmc.ncbi.nlm.nih.gov      Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P....

BLOG RULES

   1. There are no restrictions on familiarity with the materials. 2. Comments and discussions are welcome. 3. Statements must be respectful. 4. Negative opinions must be expressed correctly. 5. Profanity, insults, humiliation, propaganda, dissemination of misinformation, discrimination based on gender, age, nationality, place of residence, profession, education, and religious beliefs are prohibited. 6. Please support your statements with facts and references to sources, personal experience, observations or experimental material. 7. Please avoid using pseudonyms. 8. Advertising, arguments without purpose, meaningless messages are not allowed. 9. Compliance with national legislation, the rules of the Blogger web service and the Google platform is mandatory. NB! The author is unable to answer all questions asked. With sincere respect to you, Sergey Arkhipov .                            ...

1969DeeR

  Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Article : Dee R. Structure and function of hip joint innervation (1969). The author discusses the nervous system of the ligamentum capitis femoris (LCF) and its role in hip biomechanics. The text in Russian is available at the following link: 1969DeeR . [ii]   Original text STRUCTURE AND FUNCTION OF HIP JOINT INNERVATION Arnott Demonstration delivered at the Royal College of Surgeons of England  on 4th February 1969 by Roger Dee , M.A., F.R.C.S. Neurologcal Laboratory, Royal College of Surgeons of England, and Department of Orthopaedic Surgery, Middlesex Hospital, London   In 1885 JAMES ARNOTT, surgeon to the Middlesex Hospital and one of the founders of its Medical School, endowed a series of lectures to be given at the Royal College of Surge...

1893DenisM

  Denis  M., Jacob wrestling with the angel (1893).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Jacob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Maurice Denis  –  Jacob Wrestling with the Angel  (ca. 1893); original in the  wikimedia.org...

Tweet of Jul 17, 2024

  Jul 17, 2024 Discovering the autorotation effect in the hip joint: https://kruglayasvyazka.blogspot.com/2024/07/blog-post_14.html explaining it: https://kruglayasvyazka.blogspot.com/2024/07/blog-post_15.html and demonstrating how it helps move people and animals forward: https://kruglayasvyazka.blogspot.com/2024/07/blog-post_70.html #hip #biomechanics #ligamentum_teres                                                                                                                     BLOG CONTENT TWITTER OR X

NEWS

  New publications of our resource   October 2, 2025 1260Trebizond .   Fresco. Drawing depicting the circumstances and mechanism of the LCF injury.  18c.Augsburg.  Painting. Drawing depicting the circumstances and mechanism of the LCF injury.  1923KubinA.  Drawing depicting the circumstances and mechanism of the LCF injury. 17c.Carmen_de_Puebla.  Fresco. Drawing depicting the circumstances and mechanism of the LCF injury.  1550CampañaP.  Painting. Drawing depicting the circumstances and mechanism of the LCF injury.  1802PalmeraniÁ .  Painting. Drawing depicting the circumstances and mechanism of the LCF injury.  17c.Anonymous.   Painting. Drawing depicting the circumstances and mechanism of the LCF injury. October 1, 2025 LCF in 2025 (September)   Q uotes from articles and b ooks published in September 2025 mentioning the ligamentum capitis femoris.  September 30, 2025 Online Journal « ABOUT ROUND LIGAMENT O...

1858GrayH

  Fragments from the book Gray H. Anatomy, descriptive and surgical (1858, first edition ). The selected passages of the "classical" anatomy of the ligamentum capitis femoris (LCF) and original illustrations of Henry Carter.   Quote p. 8 1 The cotyloid cavity or acetabulum, is a deep cup-shaped hemispherical depression; formed internally by the pubes, above by the ilium, behind and below by the ischium, a little less than two-fifths being formed by the ilium, a little more than two-fifths by the ischium, and the remaining fifth by the pubes. It is bounded by a prominent uneven rim, which is thick and strong above, and serves for the attachment of a fibro-cartilaginous structure, which contracts its orifice and deepens the surface for articulation. It presents on its inner side a deep notch, the cotyloid notch, which transmits the nutrient vessels into the interior of the joint, and is continuous with a deep circular depression at the bottom of the cavity: this depression...

IRON AGE

  IRON AGE: Approximately the first millennium BC (10th-1st century BCE) Catalog of archived "publications" of the specified period       1st century BCE 25bc-50Celsus  The author recommends specific treatment for the traumatic pathology of LCF.  80-58bcApollonius Citiensis  The author discusses the connective function of the LCF, as well as its damage in hip dislocation and pathological transformation.    2nd century BCE 130bcHegetor  The author discusses the connective function of the LCF, as well as its damage in hip dislocation and pathological transformation.  3rd century BCE 3-1cent.bcSeptuaginta   The text in ancient Greek contains references to the LCF of an animal and a human. 300-100bcHeracleides Tarentinus  The author discusses the connective function of the LCF, as well as its damage in hip dislocation and pathological transformation.   4th century BCE 5th century BCE 445b с Ezra  An extreme Hebr...

Pathology of the Nervous and Vascular System LCF

  Version : 20240419 Pathology of the Vascular System OF LCF 1. Arterial thrombosis 2. Phlebothrombosis 3. Embolism 4. Damage to the walls 5. Occlusion 6. Varicose veins 7. Valve dysfunction 8. Atherosclerosis 9. Obliteration 10. Phlebitis 11. Arterial hyperemia 12. Venous hyperemia 13. Devascularization 14. Disappearance of large vessels 15. Decrease in capillary density   Pathology of the Nervous System OF LCF 1. Reducing the number of receptors 2. Disappearance of receptors 3. Selective denervation 4. Total denervation 5. Damage to the corresponding spinal cord nuclei   Keywords: ligamentum capitis femoris, ligament of head of femur , round ligament, ligamentum teres, classification, pathology, vessels, nerves                                                             ...