Skip to main content

Primates

 

Primates: Prosimii & Anthropoidea


In the Late Devonian, or 367.5 Ma, the Amniota branch arose from amphibians (2011PyronRA). In that cohort, synapsids (Synapsid) initially emerged, followed by sauropsida (Sauropsida), and then reptiles (Reptilia) (1995LaurinM_ReiszRR). The first representatives of the reptile-like (Reptilomorpha) tetrapods colonized the continents 363-290 Ma (1995LundbergJG). 

The earliest synapsid is recognized as Asaphestera platyris from the early Pennsylvanian subperiod, which lasted from 323.2 ± 0.4 to 315.2 ± 0.2 Ma (2020MannA_AndersonJS; 2023CohenKM_CarN). According to molecular clock data, mammals (Mammalia), also called animals (Theria), separated 310 Ma from the lineage that extended to reptiles (2004HedgesSB_ShoeJL). The first animals that suckled their young with milk stood out among the primitive synapsids - the ancestors of cynodonts (Cynodontia) (2013VaughanTA_CzaplewskiNJ). The oldest mammal Liaoconodon hui was found in deposits of the early Cretaceous period, that is, it lived 145.0-100.5 Ma (2011MengJ_LiC; 2023CohenKM_CarN). 

The molecular clock «shows»: the superorder Euarchontoglires separated in the class of mammals 88.8 Ma (2007JaneckaJE_MurphyWJ). This systematic unit, also called superprimates (Supraprimates), is subdivided into: the grandorder Glires with the orders Lagomorpha and Rodents; the grandorder Euarchonta with the orders Scadentia and the worldorder Primates (Primatomorpha), in which the orders Dermoptera and Primates («Leaders of Creation») are distinguished (2017EsselstynJA_FairclothBC).


Light-fronted spider monkey; exhibit of the Zoological Museum of Moscow State University, photo by the author.

Molecular evidence suggests that euarchonts evolved 87.9 Ma, primates 86.2 Ma, great apes 79.6 Ma, and tree shrews 63.4 Ma (2007JaneckaJE_MurphyWJ). According to the fossil record, placental mammals diversified about 66 Ma, and the earliest plesiadapiform primate lived 65 Ma (2015ChesterSG_ClemensWA). The oldest remains of a definite primate, Teilhardina asiatica, were found in soil strata of the early Eocene, or 55.5 million years old (2006SmithT_GingerichPD; 2023CohenKM_CarN). 

Apes emerged in the animal kingdom approximately 50 Ma (2009SrivastavaRP). One of the original hominoids, Morotopithecus bishop, flourished in Africa 20.6 Ma (1997GeboDL_PilbeamD). Its close «relative» primate Afropithecus lived 17.5-17.0 Ma (1997LeakeyM_WalkerA). According to molecular estimates, orangutans differentiated 19.3-15.7 Ma, gorillas - 9.7-7.6 Ma, and chimpanzees - 6.5-5.8 Ma (2011IsrafilH_SteiperME). Evolutionists believe that gibbons separated 29.62-20.68 Ma, orangutans - 18.42-12.53 Ma, gorillas - 9.89-6.62 Ma, common chimpanzees - 6.52-4.77 Ma, pygmy chimpanzees (bonobos) - 5.85-4.35 Ma (2022PoszewieckaB_GambinA). 

Currently, the order of primates includes 190 species, placed in the suborder lower primates (Prosimii) with the families: tupaiids (Tupaiidae), lorises (Lorisidae), lemurs (Lemuridae); and in the suborder of higher primates (Anthropoidea) with the families: prehensile-tailed monkeys or capuchins (Cebidae), marmosets (Cercopithectidae), great apes (Pongidae) and hominids (Hominidae) with the only species, Homo sapiens (1979NaumovNP_KartashevNN). In Africa and Asia, seven species of great apes of three genera still survive: orangutan (Pongo), gorilla (Gorilla) and chimpanzee (Pan) (2005WilsonDE_ReederDM). Today, orangutans and gorillas make up the subfamily hominins (Homininae), and humans and chimpanzees are united in the tribe Hominini, as having descended from a common ancestor (2001GrovesCP).

The presence of ligamentum capitis femoris (LCF) in an animal can be determined based on the analysis of the acetabulum and proximal femur. On the femur, these are the fossa of the femoral head, the groove of the femoral head, the tuberosity or cleft on the femoral head, and the marginal defect of the articular surface of the femoral head. In the pelvic area, the presence of LCF is indicated by: the acetabular notch, the acetabular fossa, the opening of the acetabular floor, and irregularities on the articular surface of the acetabulum.

As we have found out, the topic of the presence of LCF in great apes first interested researchers in the 19th century. There were cases of the absence of this structure and there were heated discussions on this issue. R. Owen (1835) discovered a depression on the head of the femur for LCF in chimpanzees, but did not find any signs of it in the orangutan. G. Mivart (1869) found a fossa of the head of the femur only in one orangutan skeleton, and also sometimes did not find traces of LCF in gorillas. E. Moser (1893) notes that LCF is usually absent in the orangutan. A morphological study by E.S. Crelin (1988) of an adult male orangutan allowed visualizing the LCF attached to the head of the femur.

It is now established that all great apes have LCF. A clear sign of its presence and functioning during life is a distinct acetabulum.


Gorilla. Left acetabulum (external view); 3-D model of the pelvis of an adult female gorilla (9.8 years old) from Barcelona Zoo. [sketchfab.com]

Chimpanzee. Left acetabulum (external view), pelvis of an adult chimpanzee; exposition of the Orlov Paleontological Museum (Moscow), photo by the author.

Orangutan. Right acetabulum (external view); 3-D model of the femur of an adult male Bornean orangutan from Barcelona Zoo. [sketchfab.com]


In some cases, LCF leaves a trace of its attachment directly on the articular surface of the femoral head.


Gorilla. Proximal part of the left femur (posterior view); 3-D model of the femur of an adult female gorilla (9.8 years old) from Barcelona Zoo. [sketchfab.com]

Chimpanzee. Proximal section of the right femur (posterior view); 3-D model of the femur of a chimpanzee from the teaching collection of the Archaeology Research Laboratories of the University of North Carolina at Chapel Hill (model by Steve Davis). [sketchfab.com]


Sometimes the distal attachment site is the edge of the head of the femur.


Orangutan. Proximal section of the right femur (posterior view); 3-D model of the femur of an adult male Bornean orangutan from the Barcelona Zoo. [sketchfab.com]


Gorilla. Left pelvic bone and proximal section of the femur (abduction, supination); exhibit of the Zoological Museum of Moscow State University, photo by the author.

 

References

Cohen KM, Harper DAT, Gibbard PL, Car N. The International Commission on Stratigraphy (ICS) International Chronostratigraphic Chart. September 2023. [stratigraphy.org]

Pyron RA. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic biology. 2011;60(4)466-81. [academic.oup.com]

Laurin M, Reisz RR. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society. 1995;113(2)165-223. [academia.edu]

Lundberg JG. Chordata. The Tree of Life Web Project. Version 1 January 1995 (under construction). [tolweb.org]

Mann A, Gee BM, Pardo JD, Marjanović D, Adams GR, Calthorpe AS, Maddin HC, Anderson JS. Reassessment of historic ‘microsaurs’ from Joggins, Nova Scotia, reveals hidden diversity in the earliest amniote ecosystem. Papers in Palaeontology. 2020;6(4)605-25. [researchgate.net]

Hedges SB, Blair JE, Venturi ML, Shoe JL. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC evolutionary biology. 2004;4(1)1-9. [link.springer.com]

Vaughan TA, Ryan JM, Czaplewski NJ. Mammalogy. Sudbury: Jones & Bartlett Learning, 2013. [books.google]

Meng J, Wang Y, Li C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature. 2011;472(7342)181-5. [researchgate.net]

Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ. Molecular and genomic data identify the closest living relative of primates. Science. 2007;318(5851)792-4. [epository.si.edu]

Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biology and Evolution. 2017;9(9)2308-21. [scholar.google]

Chester SG, Bloch JI, Boyer DM, Clemens WA. Oldest known euarchontan tarsals and affinities of Paleocene Purgatorius to Primates. Proceedings of the National Academy of Sciences. 2015;112(5)1487-92. [scholar.google]

Smith T, Rose KD, Gingerich PD. Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA. 2006;103:11223-7. [scholar.google]

Srivastava RP. Morphology of the Primates and Human Evolution. New Delhi: PHI Learning Pvt. Ltd., 2009. [books.google]

Gebo DL, MacLatchy L, Kityo R, Deino A, Kingston J, Pilbeam D. A hominoid genus from the early Miocene of Uganda. Science. 1997;276:401-4. [researchgate.net]

Leakey M, Walker A. Afropithecus: function and phylogeny. In: Begun DR, Ward CV, Rose MD (Eds). Function, phylogeny and fossils: Miocene hominoid evolution and adaptations. New York: Plenum, 1997:225-39. [link.springer.com]

Israfil H, Zehr SM, Mootnick AR, Ruvolo M, Steiper ME. Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Molecular Phylogenetics and Evolution. 2011;58(3)447-55. [ncbi.nlm.nih.gov]

Poszewiecka B, Gogolewski K, Stankiewicz P, Gambin A. Revised time estimation of the ancestral human chromosome 2 fusion. BMC genomics. 2022;23(6)1-16. [link.springer.com]

Наумов НП, Карташев НН. Зоология позвоночных. Ч. 2. Пресмыкающиеся, птицы, млекопитающие: Учебник для биолог. спец. ун-тов. Москва: Высшая школа, 1979. [chembaby.ru]

Wilson DE, Reeder DM (Eds). Mammal species of the world: a taxonomic and geographic reference. Vol. 1. Baltimore: Johns Hopkins University Press, 2005. [books.google]

Groves CP. Towards a taxonomy of the Hominidae. In: Humanity from African Naissance to Coming Millennia. In: Tobias PV, Raath MA, Moggi-Cecchi J, Doyle GA (Eds). Colloquia in Human biology and Palaeonthropology. Firenze: Firenze University Press, 2001:291-7. [library.oapen.org]

Crelin ES. Ligament of the head of the femur in the orangutan and indian elephant.  The Yale J Biol Med. 1988;61(5)383-8.  [ncbi.nlm.nih.govncbi.nlm.nih.gov.pdf

Owen R. On the osteology of the Chimpanzee and Orang. Transactions of the Zoological Society of London. Vol. I. London, 1835:343-379. [books.google

Mivart G. Contributions towards a more complete knowledge of the Skeleton of the Primates. Part I. The Appendicular Skeleton of Simia. Transact. Zool. Soc. 1869;6:175-226. [biodiversitylibrary.org

Moser E. Ueber das Ligamentum teres des Hüftgelenks. Morphologische Arbeiten. 1893;2(1)36-92. [books.google , jstor.org]


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, doctrine, animals, monkey, homo


                                                                     

The original text in Russian is available at the link: Primates

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

CATALOG OF LITERATURE ON THE LCF

  Catalog of literature on the LCF (Books, articles, links, reference, mention …) NEOLITHIC AND BRONZE (8,000 to 2,000 years BCE)  https://roundligament.blogspot.com/2024/10/neolithic-and-bronze.html   IRON AGE (10th-1st century BCE) https://roundligament.blogspot.com/2024/10/iron-age.html   1st-10th Century https://roundligament.blogspot.com/2024/10/1st-10th-century.html   11th-15th Century https://roundligament.blogspot.com/2024/10/11th-15th-century.html   16th Century https://roundligament.blogspot.com/2024/10/16th-century.html   17th Century https://roundligament.blogspot.com/2024/10/17th-century.html   18th Century https :// roundligament . blogspot . com /2024/10/18 th - century . html   19th Century https://roundligament.blogspot.com/2024/10/19th-century.html   20th Century https://roundligament.blogspot.com/2024/10/20th-century.html   21st Century https://roundligament.blogspot.com/2024/10/21st-century.html BLOG CONTENT TH...

1833GerdyPN

  P.N. Gerdy, in his experiment, discovered tensioning of the ligamentum capitis femoris (LCF) during thigh adduction. At the same time, it was noted for the first time that the consequence of LCF tension during hip adduction is a downward and lateral displacement of the femoral head. Normally, this mechanism provides unloading of the upper articular surfaces when supporting one leg (see 1874SavoryWS ). The translation from French was done in collaboration with ChatGPT 3.5.   Gerdy PN. Physiologie médicale, didactique et critique. T. 1. Paris: Librairie de Crochard, 1833. [fragment] Quote pp. 551-554   L'inclinaison de la cuisse en dehors, que l'on nomme son abduction, est un mouvement assez étendu, mais qui pourtant ne permet pas à la cuisse de se placer perpendiculairement à sa direction verticale. Les batteleurs peuvent se reposer sur un plan horizontal, les cuisses écartées en sens opposé. Dans l'inclinaison ...

LCF in 2025 (May)

  LCF in 2025 (May): Quotes from articles and books published in May 2025 mentioning the ligamentum capitis femoris. Teytelbaum, D. E., Bijanki, V., Samuel, S. P., Silva, S., Israel, H., & van Bosse, H. J. Does Open Reduction of Arthrogrypotic Hips Cause Stiffness?. Journal of Pediatric Orthopaedics , 10-1097. DOI: 10.1097/BPO.0000000000002940  [i]   journals.lww.com   SANTORI, N., & TECCE, S. M. (2025). FUTURE DIRECTIONS IN ARTHROSCOPY FOR HIP TRAUMA. Advancements of Hip Arthroscopy in Trauma , 136-143.  [ii]   books.google   RANDELLI, F. (2025). ARTHROSCOPIC FREE-BODY REMOVAL AFTER DISLOCATION OR AFTER BULLET/BOMB. Advancements of Hip Arthroscopy in Trauma , 1-11.  [iii]   books.google   APRATO, A. (2025). ARTHROSCOPIC TECHNIQUES FOR FEMORAL HEAD FRACTURE REDUCTION AND FIXATION. Advancements of Hip Arthroscopy in Trauma , 38.  [iv]   books.google   Brinkman, J. C., & Hartigan, D. E. (2025). Indications f...

1290Egerton1066

  Miniature Jacob Wrestling with the Angel from Egerton 1066 (ca. 1270 – 1290?).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Jacob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Initial E from Egerton 1066 – Jacob Wrestling with the Angel (ca. 1270 – 1290?) original ...

ChatGPT. Scientific Review On the Article: “Why Acetabular Labrum Repair May Be Ineffective”

  At our request, the language model ChatGPT, prepared to assist in the analysis and editing of texts by OpenAI, 2025, wrote a review of the article by  Arkhipov SV.   Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint   ([Ru]  Архипов СВ .  Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе.  06.04.2025 ).  The original article was reviewed and edited based on the recommendations of Grok , an artificial intelligence developed by xAI. In accordance with the comments of both reviewers, the article was corrected and published. Below is the original text of the review by ChatGPT: Scientific Review and Critical Commentary On the article: “Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint” Author: S.V. Arkhipov, Independent Researcher, Joensuu, Finland I. Scientific...

INVITATION TO COOPERATION

  We offer cooperation in the following areas: - biomechanics of the hip joint in normal and pathological conditions; - hip joint endoprostheses with ligament analogues; - non-standard methods of arthroscopy of the hip joint; - reconstruction and prosthetics of the ligament of head of femur; - early diagnosis of coxarthrosis and pathology of the ligament of head of femur; - pathogenesis of dystrophic diseases of the hip joint; - joints with flexible elements for walking robots. Please send correspondence to: archipovlcfbooks&gmail.com With sincere respect to you, Sergey Arkhipov                                                                      . Translated from Russian in collaboration with ChatGPT (version 3.5, developed by OpenAI) and the Google Translate service. Original text: Мы п...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An Instrument of Knowledge and Innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     R                   T                   ...

1996(c)ArkhipovSV

  Hip joint prostheses ( Протез тазобедренного сустава ) Patent Application RU96110383A Inventor Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Application RU96110383/14A events 1996-05-23 Application filed by С.В. Архипов 1998-08-10 Publication of RU96110383A Claims 1. The hip joint prosthesis comprising a femoral component, are fixed in the femoral head, characterized in that the femoral component is designed as a pyramid whose base has the form of a spherical surface, and the faces contains ledges perpendicular trabecular bone, in addition to the femoral component coupled to the flexible member, which is passed through a through hole formed in the femoral component, and the ends of the flexible member are provided with fastening elements. 2. The prosthesis of claim. 1, characterized in that the fastening elements are made of a metal with shape memory. 3. The prosthesis of claim. 1, characterized in that the faces of the femoral component have...

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

ACETABULAR CANAL

   Acetabular Canal  (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  Acetabular Canal.  Part 2.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  Acetabular Canal.  Part 3.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions.  BLOG CONTENT THE DOCTRINE OF LCF MORPHOLOGY AND TOPOGRAPHY                                                                                                          ...