Skip to main content

2018FreitasA_BandeiraVC

 

The authors reported a case of open hip dislocation and documented avulsion of the ligamentum capitis femoris (LCF) from the acetabulum. The injured LCF appeared as a large cord-like structure, attached to the femoral head (Fig. 1). Perhaps Hippocrates of Kos saw such an LCF in open dislocation of the hip and described it in his treatise «Mochlicus» (1886AdamsF). One year later, the patient's x-ray revealed a significant narrowing of the joint space in the upper part of the hip joint (Fig. 9). In our opinion, this to be a consequence of hyaline cartilage wear due to overload in the absence of LCF. In an unaffected hip joint, the width of the radiological joint space at the upper section than in the lower section (Ossification of the LCF). When examined one year after the injury, the patient could stand on one leg. We noticed that his body was excessively deviated towards the supporting hip joint, and the opposite half of the pelvis was elevated (Fig. 8). This is a mechanism for reducing the load on the abductor muscle group of the hip joint in the absence of the LCF, which is an important supporting element (Main Scheme). Normally, without LCF pathology, the spinal tilt in a single-support position is approximatel~ (2023АрхиповСВ), and the unsupported half of the pelvis is tilted downwards (2008ArkhipovSV Fig.1c).

Traumatic Open Anterior Hip Dislocation in an Adult Male: A Case Report

Anderson Freitas, Vincenzo Giordano Neto, Patrick F. Godinho, Silvio L. Macedo, Vinicius F. Ribeiro de Oliveira, Gary Alan A. Montano, Celio Silva, Vanessa C. Bandeira 

Abstract

This case report describes the surgical treatment and one-year follow-up of an adult male patient, who was treated for a severe anterior open hip dislocation fracture with no sign of femoral head necrosis and maintaining a Harris Hip Score (HHS) of 93. 

Introduction

The hip is a joint that has great stability, intrinsically due to its ball-and-socket shape and extrinsically due to its ligaments and strong muscles. A high-energy trauma is needed to cause the dislocation of the hip. Anterior hip dislocations are very uncommon and constitute 10%-15% of the traumatic displacements of this joint. However, when they do occur, they could be associated with brain, thoracic, and abdominal lesions as well as local lesions, such as neurological or severe vascular injuries, requiring immediate intervention. A reserved prognosis, due to the high rate of complications such as deep infections, femoral head necrosis, severe functional limitation, and arthrosis, is observed in several published case reports [1- 5]. The authors describe the follow-up of a fracture and a severe anterior dislocation of the hip in a young adult who surprisingly had a good outcome in the one-year follow-up, with a Harris Hip Score (HHS) of 93, no necrosis of the femoral head, and with only a slight degree of arthrosis. 

Case Presentation

We present the case of a 28-year-old male who suffered a high-energy motorcycle accident. At admission, the patient was conscious, Glasgow coma scale (GCS) 15, hemodynamically stable, and presenting superficial excoriations on the trunk and lower limbs. However, there was a wound of approximately 20 cm on the lateral aspect of the right hip at the level of the greater trochanter, exposing the entire proximal end of the femur (Figure 1). 

Figure 1: A photograph of the lesion in the right hip region, showing the exposure of the entire proximal end of the femur

After a clinical evaluation and imaging tests that excluded cranial or abdominal disorders, we prioritized the neurovascular examination of the affected limb, which did not present complications, and the protection of the femoral head with the use of moistened gauze and saline solution. Radiographs in the anteroposterior view of the right hip showed a hip dislocation with a greater trochanter fracture (Figure 2).

Figure 2: A radiograph of the right hip showing the dislocation with a fracture of the greater trochanter


An exhaustive irrigation of the acetabular cavity and the exposed femur was performed, using 10 liters of saline solution at 9% when the patient was in the surgical room. The procedure happened under sedation and spinal anesthesia. A large debridement of muscle, fascia, and bone tissues was required to remove all the devitalized tissue, considered viable only when active bleeding and the clean appearance of the open wound was observed through direct vision by the surgeons.

The fractured fragment of the greater trochanter was fixed with two 6.5 mm cancellous screws and washers at the proximal end of the femur (Figure 3). 

Figure 3: Image of a radiograph after surgery, showing hip reduction and the fixation of the greater trochanter


After a revision of the debridement sites and radioscopic control of the hip reduction and fixation, the wound was closed (Figure 4).

Figure 4: Picture of the lesion, showing the closure of the wound after surgery


After the first 48 hours of surgery, the wound was releasing a significant amount of secretion, bloody and serum like, and a strong odor was observed, with no laboratory exams indicating infection. At this time, a new surgical procedure (second look) with greater aggressiveness was obtained, removing all devitalized tissue and bad-in-appearance cutaneous cover, which was not necrotic but had an unhealthy appearance (Figure 5). 

Figure 5: Picture of the wound after second-look surgery


A vacuum-assisted closure was used (Figure 6).

Figure 6: Picture of the vacuum-assisted closure of the wound

 

The vacuum-assisted closure was changed every week for four weeks until the appearance of granulation tissue at the surface of the surgical wound (Figure 7). During this period, the patient's laboratory exams showed a drop in the hemoglobin level, resulting in a 7.1 g/dl result, which was corrected with a transfusion of 600 ml of red blood cell (RBC) concentrate. As a rehabilitation procedure, we started daily physiotherapy with passive limb mobility and activity, within pain limits, with no load on the right hip.

Figure 7: Picture of the wound after four weeks of vacuum-assisted closure

 

In the fifth week, a new surgical procedure was performed for skin grafting. It was performed with no major occurrences and implantation of the graft was successful. Shortly after the removal of the stitches from the graft surgery, in about eight weeks, partial weight bearing on the affected limb was initiated with the use of two crutches.

After a one-year follow-up, the patient had good mobility of the affected limb (Figure 8) without significant pain during mobilization and examination of the joint, with a Harris Hip Score of 93 points.

Figure 8: Pictures of the patient at the one-year follow-up


The radiograph showed a decrease of the articular space in the right hip (Figure 9) but the magnetic resonance imaging (MRI) showed no necrosis of the femoral head. (Figure 10). He was able to ride a bicycle, run, and do squats.

Figure 9: Radiograph showing the healing of the greater trochanter fracture and a narrowing of the hip joint space


Figure 10: Pictures of the MRI, showing the reduction of the articular space and no necrosis of the femoral head 


Discussion

An open anterior dislocation of the hip is a severe trauma with only a few reports described in the literature. Therefore, due to the rarity of the cases, especially in adult patients, there is a lack of treatment guidelines [1].

An early diagnosis with image evaluation is very important for initial treatment and follow-up [2].

Immediate care with precautions taken during the reduction and subsequent debridement procedures, followed by the use of vacuum-assisted wound closure, may be a determinant of good outcomes by avoiding the occurrence of a deep infection [3].

Load restriction and early rehabilitation may have been a differential to avoid the complications of femoral head cartilage lesions, as greater pain limits the range of movement [4-5].

As seen earlier in literature, the fracture of the greater trochanter could be a protective factor for femoral head vascularization, especially if the fragment suffers a posterior deviation, sometimes being able to preserve the insertion of the external rotators. This may have been a reason for the maintenance of the medial circumflex artery close to the greater trochanter, allowing vascular restoration on the femoral head after reduction and fixation [6].

There is still no protocol or guideline for this type of fracture. Therefore, it is very clear that taking precautions during procedures such as reduction, cleaning, fixation, and rehabilitation is very important to achieve a better result and avoid or postpone the complications of this very serious fracture. 

Conclusions

The very low number of cases like this in the literature leads us to affirm that there is no specific protocol to be followed. A functional limitation of the hip was imposed according to what was described previously in the literature. However, the absence of osteonecrosis, until this moment, showed a different result from all the case reports analyzed by the authors. The maintenance of vascularization from the femoral head made us believe that the association of a greater trochanter fracture with this pathology may be the reason for this outcome. 

References

1. Tornetta P 3rd: Hip Dislocations and Fractures of the Femoral Head. Michael S.H. Kain (ed): Williams and Wilkins, 2006. 1716-1752.

2. Erb RE, Steele JR, Nance Jr EP, et al.: Anterior dislocation of the hip: spectrum of plain film and CT findings. Roentgenol. 1995, 165:1215-1219. 10.2214/ajr.165.5.7572506

3. Anderson Luiz de Oliveira AL, Machado EG: Open anterior dislocation of the hip in an adult: a case report and review of literature [Article in English, Portuguese]. Rev Bras Ortop. 2014, 49:94-97. 10.1016/j.rbo.2013.04.010

4. Şahin V, Karakaş ES, Aksu S, Atlihan D, Turk CY, Halici M: Traumatic dislocation and fracture-dislocation of the hip: a long-term follow-up study. ‎J Trauma Acute Care Surg. 2003, 54:520-529. 10.1097/01.TA.0000020394.32496.52

5. Mehlman CT, Hubbard G, Crawford AH, Dennis RR, Wall EJ: Traumatic hip dislocation in children: long-term followup of 42 patients. Clin Orthop Relat Res. 2000, 376:68-79.

6. Freitas A, Macedo Neto SL: Apophysary fracture or avulsion of the greater trochanter. Acta Ortop Bras [online]. 2016, 24:164-166. 10.1590/1413-785220162403155803 

External links

Freitas A, Neto VG, Godinho PF, Macedo SL, Ribeiro de Oliveira VF, Montano GAA, Silva C, Bandeira VC. Traumatic Open Anterior Hip Dislocation in an Adult Male: A Case Report. Cureus. 2018;10(6)e2862.  doi:10.7759/cureus.2862 [cureus.com , cureus.com(PDF)] 

Authors & Affiliations

Anderson Freitas (1), Vincenzo Giordano Neto (2), Patrick F. Godinho (3), Silvio L. Macedo (4), Vinicius F. Ribeiro de Oliveira (1), Gary Alan A. Montano (1), Celio Silva (1), Vanessa C. Bandeira (1) 

1. Instituto De Pesquisa E Ensino-Ipe, Hospital Ortopedico E Medicina Especializada - Home, Brasilia, BRA

2. Orthopedics, Hospital Municipal Miguel Couto, RIo De Janeiro, BRA

3. Instituto De Pesquisa E Ensino-Ipe, Hospital Ortopedico E Medicina Especializada-Home, Brasilia, BRA

4. Instituto De Pesquisa E Ensino-Ipe, Hospital Ortopedico E Medicina Especializada - Home, Braslia, BRA 

Corresponding author

Anderson Freitas, silviomneto31@gmail.com 

Copyright

Freitas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 3.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

License

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip dislocation, open dislocation of hip, trauma, visualization, observation

.                                                                     .

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7


BLOG CONTENT

EXPERIMENTS AND OBSERVATIONS

Comments

Popular posts from this blog

NEWS

  New publications of our resource ( section started June 04, 2024 ) January 11, 2025 Acetabular Canal.  Part 1.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions. See also  Part 2  and  Part 3 .  January 10, 2025 1877MorrisH An excerpt from an article noting that the LCF is stretched during flexion, adduction, external rotation, and is always torn during hip dislocations. January 8, 2025 1877BrookeC  Report and discussion on Henry Morris's paper Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint,  with  mentioning the role played by LCF.   January 7, 2025 Tweet of January 7, 2025   1898AshhurstJ The author discusses the function of the LCF as a supporting element of the body, its role in the development of deformity of the hip joint, reducing pressure and stress in the femoral head. January 4, 2025 2024Migliorin...

LCF in 2024 (December)

Publications about the LCF 2024  ( Dece mber)      Kneipp, M. L. A., Sousa, L. N., Cota, L. O., Malacarne, B. D., Winter, I. C., Santana, C. H., ... & Carvalho, A. M. (2024). Bilateral coxofemoral dysplasia in a Mangalarga Marchador foal. Journal of Equine Veterinary Science , 105253. [i]   sciencedirect.com   Siddiq, B. S., Gillinov, S. M., Cherian, N. J., & Martin, S. D. (2024). Arthroscopic Reconstruction of the Acetabular Labrum Using an Autograft Hip Capsule. JBJS Essential Surgical Techniques , 14 (4), e23.  [ii]   pmc.ncbi.nlm.nih.gov   Kraft, D. B., Delahay, J. N., & Murray, R. S. (2024). Pediatric Orthopedics. In  Essentials of Orthopedic Surgery  (pp. 139-185). Cham: Springer Nature Switzerland.  [iii] link.springer.com   Gebriel, M. E., Farid, M., Mostafa, A., Shaker, N., Abouelela, Y., & Noor, N. (2024). The Surgical Anatomy of Canine Coxofemoral Joint and Innovative Educational...

1917TrevesF_MackenzieC

  Fragments from the book Treves F, Keith A, Mackenzie C. Surgical Applied Anatomy, 7th ed. (1917). The author discusses the strength and significance of the ligamentum capitis femoris (LCF) and its changes in hip dislocations and dysplasia.   Quote pp. 542-543 3. THE HIP-JOINT … The manner in which the various movements at the hip are limited may be briefly expressed as follows: The limit of every natural movement is fixed by the extensibility of the muscles which surround a joint. That is readily seen at the hip-joint, for when the knee is extended, and the hamstring muscles thus tightened, flexion at the hip is limited long before the ligaments become tense. Ligaments only come into play when the muscular defence of the joint breaks down. Flexion, when the knee is bent, is limited by the contact of the soft parts of the groin. Extension, by the ilio-psoas, rectus femoris, and the ilio-femoral or Y -ligament. Abduction, by the adductor mass of muscles and the pubo-capsular l...

1857RichetA

  Fragments of the book Richet A. Traité pratique d' Anatomie medico-chirurgicale (1857) are devoted to the anatomy of the ligamentum capitis femoris (LCF). The author believes that the vessels passing through the LCF are sufficient to supply blood to the femoral head. The text is prepared for machine translation using a service built into the blog from Google or your web browser. In some cases, we have added links to quotations about LCF available on our resource, as well as to publications posted on the Internet.   Quote pp. 922-923 Articulation coxo-femorale. Cette articulation, qui appartient à la classe des énarthroses dont elle représente le type, a été l'objet de travaux importants de la part des physiologistes et des chirurgiens, et c'est aux frères Weber et à M. Malgaigne, plutôt qu'aux anatomistes purs, qu'on doit d'avoir mis en lumière un grand nombre des faits qui vont suivre et qui éclairent des questions pathologiques avant eux restées insol...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An instrument of knowledge and innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     r                   T                   ...

LCF in 2024 (November)

Publications about the LCF 2024  (November) .   Mohammed, C., Kong, R., Kuruba, V., Rai, V., & Munazzam, S. W. (2024). Outcomes and complications of hip arthroscopy for femoroacetabular impingement syndrome: A narrative review. Journal of Clinical Orthopaedics and Trauma , 102797. [i]   journal-cot.com   Shah, M. Q. A., Kiani, R. B., Ahmad, A., Malik, H. A., Rehman, J. U., & Anwar, Z. (2024). Children with Developmental Dysplasia of Hip-Our Experience of Outcome at a Tertiary Care Centre. Pakistan Armed Forces Medical Journal , 74 (5 ), 1236.   [ii]    scholar.google.com   Graf, R. Sonography of the Infant’s Hip: Principles, implementation and therapeutic consequences . Springer Nature. 2024.   [iii]    books.google   Sáenz, J. F. C., Carrera, E. T., Gutiérrez, R. A., & De La Ossa, L. (2024). Capsular Traction-Assisted Hip Arthroscopy: An Alternative to T-Capsulotomy for Osteochondroplasty. Arthros...

COPYRIGHT

  If not stated otherwise, all content on this blog, including text, graphics, logos, button icons, images, photographs, tables, diagrams, charts, videos, is the property of the resource administration, and is protected by copyright laws. The compilation of blog content is also the exclusive property of its administration and is protected by relevant legislation. Unless expressly specified and written permission is granted by the blog administration, any use of its materials for commercial purposes or posting on other platforms is prohibited. If you believe that the text, images, or videos published in the blog violate your copyrights, we kindly ask you to send us a notification requesting the removal of the material, accompanied by a reasonable explanation. Please submit a notice of copyright infringement that you have identified in writing to the following email address: archipovlcfbooks&gmail.com If you believe that the information posted on the blog violates the rig...

1753TarinP

  Fragments from the book Tarin P. Ostéo-graphie (1753). The author notes the localization of ligamentum capitis femoris (LCF) and uses synonyms: ligament rond, ligamentum teres capitis femoris. The text is prepared for machine translation using a service built into the blog from Google or your web browser. Quote p. 24 Les Ligamens de l'extrémité inférieure sont, 1°. la Membrane capsulaire, &c. de la cavité cotyloïde, le Ligament rond, l'Appareil ligamenteux propre à cette cavité; le Ligament transveríal interne de son bord, le transversal externe, les deux Ligamens glanduleux; … Quote p. 54. Illæ tres offeæ portiones simul unitæ Cavitatem cotyloïdeam q.t. a. constituunt, in qua occurrit Foveols h. glandulas synoviales articulationis excipiens, cuique sesc inserit ligamentum teres capitis femoris, &c. Vid. t. u. v. TAB. I. II. III. External links Tarin P. Ostéo-graphie, ou Description des os de l'adulte, du foetus, &c. Precedée d'une introduction a l'etu...

1877BrookeC

  Report by Brooke C. and discussion of the article Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint. By Henry Morris. M.A., M.B. (1877). In the discussion, Dr. Barwell remarked that: «He agreed with Mr. Morris in regarding the ligamentum teres as of little importance in the prevention of dislocation; it probably did little more than protect the vessels passing to the head of the bone. He saw a case some years ago, in which there was congenital absence of the ligamentum teres; but he had no reason for believing that the man was more liable to dislocation of the femur than other persons.» The author of the article, Henry Morris, suggested that Malgaigne «... did not attach much importance to the ligamentum teres; and believed that it had no power to hold the bone in its place.».   ROYAL MEDICAL AND CHIRURGICAL SOCIETY. TUESDAY, FEBRUARY I3TH, 1877. CHARLES BROOKE, F.R.C.S., F.R.S., Vice-President, in the Chair. D...

398-405Jerome of Stridon

  Fragments of the Book of Genesis translated by Jerome of Stridon (398-405). The Latin text contains mentioned to ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 398-405Jerome of Stridon [Rus]. Quote [Lat] Genesis 32:25,32 25. Qui cùm videret quòd eum sperare non posset, tetigit neruum femoris eius, & statim emarcuit. (original source: 1572 MontanoBA , p. 110) 32. Quá ob causam non comedunt neruú filij Israel, qui emarcuit in femore Iacob, vsq; in præsentem diem, eo quòd tetigerit neruú femoris eius, & obstupuerit. (original source: 1572 MontanoBA , p. 112) Translation [Eng] Genesis 32:25,32 25. But when he saw that he could not prevail against him, he touched the sinew of his thigh, and immediately it withered. (original source: 1572 MontanoBA , p. 110; our translation) 32. For this reason, the children of Israel do not eat the sinew that withered in Jacob's thigh to this day, because he touched the sinew of his thigh and dam...