Skip to main content

2008ArkhipovSV

 

On the Role of the Ligamentum Capitis Femoris in the Maintenance of Different Types of Erect Posture

S.V. Arkhipov

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, abductor muscle group, role, function, hip joint, model, biomechanics, walk, gait cycle, single-legged stance 

ABSTRACT

New experimental and clinical data on the function of the ligamentum capitis femoris (LCF) and its participation in maintaining an erect posture were obtained. It was established that this anatomical element is involved in constraining the hip joint adduction and may x the joint in the frontal plane, turning it into an analogue of a second-class lever. In both unstrained one-support and asymmetrical two-support orthostatic postures, when the LCF is stretched and the abductor muscle group is exerted, a load equal to the body weight is evenly distributed between the upper and lower hemispheres of the caput femoris. In addition, the LCF function increases the steadiness of the erect posture and unloads the muscle apparatus.

INTRODUCTION

The ligamentum capitis femoris (LCF) is an integral anatomical element of the human body [1, 2]. It is located in the hip joint (HJ), connecting the thigh and hip bones [3], in a special osteochondrous cavity composed of the acetabular fossa and notch on one side and the articular surface of the caput femoris (CF) on the other side. The normal LCF length is about 2.5 cm [4], so that its visualization is possible only with modern tools [5–7]. We found one of the rst reliable mentions of the LCF in Vesalius’s Epitome […] (1543) [8]. In the Russian literature, the earliest description of the LCF was given by Naranovich (1850) [9].

The function of the LCF has not been unambiguously determined [6] and is subject to controversy. Tonkov wrote that the LCF function “… is not perfectly clear; in any case, its mechanical significance is not so great” [4]. However, according to Neverov and Shil’nikov, it plays an important role in HJ biomechanics [10], while Vorob’ev claimed that its “biomechanical function” is of importance only under certain conditions [11]. On the other hand, Pirogov compared the LCF to “a steel spring on which the pelvis is suspended from the caput” [12]. Gerdy and Savory [13] advanced a similar opinion, the former author noting that the LCF is exerted in the erect posture. Ivanitskii, when touching on the role of the LCF in maintaining an erect posture, wrote [14], “[…] in an asymmetrical posture, with the pelvis tilted, the ligamentum capitis femoris on the side of the supporting, usually straightened, leg is stretched to reinforce the hip joint” [14].

Four main types of erect posture are known (Fig. 1). A horizontal position of the pelvis and equal loading of both inferior limbs straightened in the knee joints characterize a two-support symmetrical orthostatic position. With a two-support asymmetrical orthostatic position (asymmetrical standing, or an at ease posture), one of the legs is straightened while the other is bent at the knee joint and HJ, the pelvis deviating from the horizontal plane [14, 15]. One-support orthostatic positions are usually subdivided into “strong” and “weak” postures [16]. In our opinion, it is more apposite to call them “strained” and “unstrained,” respectively. The strained one-support position is characterized by a horizontal position of the pelvis, while its inclination to the side opposite the support, with less exertion of the muscles of the supporting leg, is characteristic of the unstrained posture.

Fig. 1. Diagram of the main types of erect posture: (a) the two-support symmetrical orthostatic position; (b) the two-support asymmetrical orthostatic position; (c) the unstrained one-support orthostatic position; (d) the strained one-support orthostatic position.

In HJ biomechanics, it is commonly accepted that maintaining an orthostatic position in the frontal plane depends only on muscles [16–20]. The LCF is not mentioned as a functional component of the HJ, and its mechanical reaction is not considered in calculating CF loading.

The purpose of this study was to clarify the function of the LCF and its role in maintaining different types of erect posture.

EXPERIMENTAL

In order to study the different types of erect posture, we selected 104 men with no HJ pathology aged from 18 to 24 years (18.9 years on average). At the rst stage, each subject assumed a two-support symmetrical orthostatic position with equal loads on both inferior limbs. Then, the subject was asked to assume a two-support asymmetrical orthostatic position, with the left leg bent at the HJ and knee joint, the right one remaining straightened, and the pelvis tilted relative to the horizontal plane. Then, the subject assumed a strained one-support orthostatic position with the weight on the right leg; this was followed by a transition to the unstrained position. In this position, we measured the value of hip adduction in the supporting HJ. In each type of erect posture, we recorded the position of the pelvis and the angular proportions in the large joints of the inferior limbs. In the one-support position, attention was paid to the degree of exertion of the muscles of the supporting leg and the general steadiness of the posture.

At the second stage, we claried the role of the ligament apparatus in constraining adduction of the hip and tilting of the pelvis and in xing the HJ in an unstrained one-support position. The relationships between the positions of the pelvis and the supporting hip were reproduced in a prone position with completely relaxed muscles, which permitted us to exclude the inuence of the weight of the body and muscles on functioning of the ligament apparatus of the HJ. The straightened, relaxed leg of the subject was elevated upwards as far as possible and shifted to the body midline up to the limit of the ligament stretching. Then, we measured the value of the hip adduction angle of the HJ. Quantitative data were analyzed using the Excel 97 software. The program calculated the mean, the standard deviation, the median, the mode, Student’s test, and the coefficient of correlation. The value of the adduction of the supporting hip in an unstrained one-support orthostatic position was compared with that of the maximum adduction of the hip in a prone position, with maximum HJ extension and relaxed muscles.

In order to clarify the functions of the LCF and abductor muscle group, we constructed a plane mechanical model of the HJ containing analogues of the considered structures. It was based on an actual survey roentgenogram of the pelvis of a young man with no HJ pathology. The pelvis and the proximal part of the right femoral bone were drawn full size, separately, on a sheet of stiff cardboard and then cut out along the contour. The centers of the drawings of the acetabulum and LCF were conjoined or, in some cases, linked by a metal pin. A thin nylon thread 20 mm long linking the center of the drawing of the CF fossa with a point in the lower section of the drawing of the acetabular fossa was used as a model of the LCF. A thin rubber belt 1 mm in diameter was used as a model of the abductor muscle group. One of the ends was fastened to the upper edge of the drawing of the iliac crest, and the other, to the analogue of the greater trochanter. The properties of the model were studied both in the absence of the LCF and abductor muscle group models and in their presence in different combinations. We clarified the possible rotational and translational movements of the femoral part of the model in the frontal plane. The location of the loading regions in the acetabulum and CF, the direction of the reaction forces of the LCF and abductor muscle group analogues, and the direction of the resultant force at different phases of adduction were determined. We simulated equilibrium conditions for a pelvis moving in the frontal plane in the strained and unstrained one-support orthostatic positions (Figs. 2a, 2b).

Fig. 2. Simulation of different types of one-support erect posture using a two-dimensional mechanical model of the hip joint: (a) the strained one-support orthostatic position; (b) the unstrained one-support orthostatic position; the analogue of the LCF is indicated with an arrow. Simulation of different types of one-support erect posture using a three-dimensional mechanical model of the hip joint: (c) the strained one-support orthostatic position; (d) the unstrained one-support orthostatic position with both the LCF and the analogue of the abductor muscle group stretched; (e) the same position with a relaxed abductor muscle group analogue.

In order to study the functions of the LCF and abductor muscle group in more detail, we constructed a three-dimensional HJ model. We used a Thompson unipolar HJ endoprosthesis xed on a ringlike base, with a small plate simulating the greater trochanter, as a femoral basal element. In accordance with the diameter of the CF analogue, a metal model of the acetabulum was made in the form of a thick-walled spherical shell having a shaped recess that simulated the acetabular fossa and notch. A plate simulating the iliac crest and a plate for suspending a load, a 1- to 3-kg dumbbell, were attached from the outside. The model contained an LCF analogue made from a nylon cord 5 mm in diameter. One end of this cord was tightly xed to an opening made in the shaped recess of the acetabulum model, and the other, to the CF analogue. Both parts of the model were also linked to a dynamometer, whose spring simulated the function of the abductor muscle group; oil lubricated the friction node. The properties of the model were studied both in the absence of the LCF and abductor muscle group analogues and in their presence in different combinations. In some experiments, we changed the length of the abductor muscle group analogue, thereby modeling different degrees of its exertion. We determined the possible rotational and translational movements in the hinge of the model, their range, and constraints. We modeled equilibrium conditions for the pelvis moving in the frontal plane in the unstrained and strained types of one-support orthostatic position (Figs. 2c–2e) and claried the location of the load region in the simulated CF.

RESULTS AND DISCUSSION

Analysis of the data obtained for healthy subjects permitted us to characterize the main features of the known orthostatic positions. In a two-support symmetrical orthostatic position, the pelvis was disposed horizontally; in the asymmetrical position, it was tilted toward the leg bent at the HJ and knee joint. The body was at rest with no prominent uctuations in the frontal plane. The two-support asymmetrical orthostatic position has proved to be preferable for subjects as requiring a lesser effort of the muscles of the leg bent at the knee joint. In a strained one-support orthostatic position, the pelvis acquired a horizontal orientation. On a transition to the unstrained one-support orthostatic position, we observed adduction, extension, and outward rotation in the HJ. The pelvis shifted translationally toward the supporting leg, its nonsupporting half leaning downwards. The amount of tilt of the pelvis in the frontal plane was practically the same as that in a two-support asymmetrical orthostatic position (Fig. 1). Both unstrained and strained one-support orthostatic positions were equally steady, but a lesser exertion of the muscles of the supporting leg was characteristic of the unstrained position. We found the presence of muscle tone in the abductor muscle group. The mean angular value of the maximum adduction in the supporting HJ was 18.51 ± 2.29°, with medians and modes equal to 19°. When the positions of the pelvis and the supporting hip characteristic of an unstrained one-support orthostatic position were reproduced in the prone posture, the mean angular value of the maximum HJ adduction was 19.09 ± 2.52°, with the median and mode equal to 19°. Comparison of the adduction angles in the unstrained one-support orthostatic and recumbent postures showed that, at the individual level, the correlation of their values was 0.90 (p < 0.001) with no statistically signicant differences in the mean values. Therefore, in the unstrained one-support orthostatic position, the adduction of the hip and closing of the HJ in the frontal plane are maximum, which occurs mainly at the expense of the ligaments with minimum participation of muscles.

Experiments with the plane and three-dimensional mechanical models showed that the LCF imposes constraints on the HJ adduction by limiting abduction, pronation and supination, and translational outward and upward CF movements, and also prevents dislocation. Stretching of the LCF is brought about by adducting the hip and inclining the pelvis to the nonsupporting side, which means that the HJ closes in the frontal plane, becoming an analogue of a second-class lever (Fig. 3a). In the absence of abductor muscle group exertion, the resultant force acting on the HJ is directed upwards, loading only the inner distal part of the CF (Figs. 2e, 3a). Our data conrm that exertion of the abductor muscle group increases abduction and constrains adduction of the hip. In cooperation with antagonists, it is capable of closing the HJ in the frontal plane in an arbitrary position. If the abductor muscle group is exerted without stretching of the LCF, the resultant force acting on the HJ is directed upwards, loading only the inner proximal part of the CF (Figs. 2c, 3c). The abductor muscle group cooperates with the LCF in constraining adduction. Its tightening can decrease the LCF stretching, and, vice versa, a stretched LCF decreases the load on the abductor muscle group (Figs. 2b, 2d, 3b).

Fig. 3. Diagrams of different types of erect posture, with acting forces indicated: (a) the unstrained one-support orthostatic position, the hip joint fixed only by the LCF without participation of the abductor muscle group; (b) the unstrained one-support orthostatic position with both the LCF and the analogue of the abductor muscle group stretched; (c) the strained one-support orthostatic position with a nonstretched LCF; (d) the two-support symmetrical orthostatic position with both LCFs loose; (e) the two-support asymmetrical orthostatic position with a stretched left LCF. Simplified schemes below the diagrams illustrate the pelvis equilibrium patterns in the frontal plane; mgm is the mesogluteus, and load patterns for the CF are indicated by thin arrows (see the text for details).

It was established experimentally that the LCF is not subjected to stretching in a strained one-support orthostatic posture, while the abductor muscle group and its antagonists damp the HJ movements in the frontal plane (Figs. 2a, 2c). Here, the HJ is an analogue of a rst-class lever, which means loading of the upper hemisphere of the CF. If we assume that the lever (L) of the body weight (P) exceeds threefold the lever (L1) of the abductor muscle group effort (F) (Fig. 3c), then the equilibrium condition for a strained type of one-support orthostatic position in the frontal plane is

LP = L1F.

The force (F1) produced by the abductor muscle group will be three times greater than the body weight,

F = LP/L1 = 3P.

Then, the resultant downward force (F1) acting on the CF is four times greater than the body weight:

F1= F + P = 4P.

Such heavy loads are normally brief, being observed in the case of the strained type of the one-support orthostatic position and during the transition from the two-support orthostatic posture to the unstrained type of the one-support orthostatic position. In our opinion, the prolonged xation of the HJ in the one-support orthostatic posture at the expense of only muscle exertion is inefcient, leading to LCF overloading and, therefore, to HJ pathology. The above calculations hold true even in the case of a severe LCF injury, e.g., after a cured traumatic hip dislocation and in HJ endoprostheses devoid of an LCF analogue.

Analysis of the experimental data and results of clinical examinations indicates that, in the unstrained one-support orthostatic posture, hip adduction and tilting of the pelvis toward nonsupporting side are constrained mainly by a stretching LCF (Figs. 2b, 2d, 2e), which agrees with the opinions of other authors [3, 14]. The pelvis, as stated by Pirogov, is “suspended” from

the LCF [12]. The function of the abductor muscle group consists only of decreasing the LCF loading, which ensures the body’s equilibrium. The combination of stretching of the LCF and exertion of the abductor muscle group is optimal in terms of loading all HJ elements and maintaining the steadiness of the erect posture in the frontal plane. In this case, the proximal region of the LCF xation is the center of rotation, while the HJ is an analogue of a rst-class lever. If one assumes that the lever (L) of the body weight (P) is equal to the lever (L1) of the abductor muscle group effort (F) (Fig. 3b), then the equilibrium condition in the frontal plane is as follows:

LP = L1F1,

the LCF reaction (F1) will be

F1 = P + F = 2P.

Given this type of a one-support orthostatic posture, both the stretched LCF and the tightened abductor muscle group deviate from the vertical. The horizontal components of the reaction forces of the LCF and the abductor muscle group are summed, resulting in a horizontal force (F2) that uniformly presses the acetabulum to the CF. The mean angular deviation from the vertical of the force produced by the abductor muscle group is 21° [17]; the angular deviation of the LCF is, according to our data, about 50°. The calculations show that the amount of F2 pressing the pelvis to the CF is approximately equal to twice the weight of the body (1.96 P), with the horizontal component of the LCF reaction force equal to 1.6 P and the horizontal component of the abductor muscle group reaction force equal to 0.36 P. The loads on the upper and lower CF hemispheres are approximately equivalent to the body weight without taking into account the mass of the supporting leg.

In an unstrained one-support orthostatic posture with little or no participation of the abductor muscle (Fig. 2d), the movement of the HJ in the frontal plane is that of a second-class lever analogue. If we assume that the lever (L) of the body weight (P) exceeds threefold the lever (L1) of the LCF reaction force (F1) (Fig. 3a), then the equilibrium condition of this kind of erect posture can be written as follows:

LP = L1F1.

Therefore, the LCF reaction (F1) is equal to three times the weight of the body:

F1 = LP/L1 = 3P,

The resultant upward force (F2) acting on the CF is equal to two times the weight of the body:

F2 = F1 – P = 2P.

F1 and P have opposite signs, as the forces equilibrating the pelvis have opposite directions.

In the two-support symmetrical orthostatic position, the pelvis–lower limbs system is an analogue of a hinged frame. If the legs are evenly loaded, the resultant force acts predominantly on the upper hemisphere of both CFs. Without muscle exertion being taken into account, each of them is under a load equal to one half of the body weight located above the HJ level. The abductor and adductor muscles, without the participation of the LCF (Fig. 3d), bring about xation of the HJ in the frontal plane.

In a two-support asymmetrical orthostatic position, the lower limb girdle is also an analogue of a hinged frame, the pelvis being tilted in the frontal plane. On the side of the straightened leg, provided that the LCF stretching and the abductor muscle group tightening are in equilibrium, the load on the CF is evenly distributed, as in the case of an unstrained one-support orthostatic position.

Thus, both its upper and lower hemispheres are subjected to a load equal to one-fourth of the body weight located above the HJ. On the side of the bent leg, the LCF is not stretched, and so the CF is under downward pressure equal to one half of the body weight (Fig. 3e). The pelvis is xed in the frontal plane by means of the abductor muscle group and its antagonists and on the side of the extended leg by means of the LCF. The two-support asymmetrical orthostatic position is optimal with respect to the distribution of load between both HJs and the muscles.

CONCLUSIONS

1. We established experimentally that the LCF constrains adduction and lateral and cranial CF displacement and can close the HJ in the frontal plane, which is equivalent to the transformation of this structure into an analogue of a second-class lever.

2. The unstrained type of the one-support orthostatic position, when frontal closure of the HJ is only at the expense of the LCF, provides complete unloading of the abductor muscle group. In this case, the resultant load on the CF has an upward direction, being approximately equal to twice the body weight. This load is evenly distributed between the upper and lower CF hemispheres by a combination of tightening of the abductor muscle group and stretching of the LCF.

3. LCF stretching does not occur in a strained type of the one-support orthostatic position. The HJ is damped in the frontal plane by exertion of the abductor muscle group and its antagonists, the resultant load on the CF having a downward direction and being approximately equal to four times the body weight.

4. In the two-support symmetrical orthostatic position, provided that the legs are evenly loaded, the resultant force acts predominantly on the upper hemispheres of both CFs, each of these carrying one half of the body weight located above the HJ level.

5. In the two-support asymmetrical orthostatic position, the resultant force, which is equal to one half of the body weight, acts, on the side of the bent leg, on the upper hemisphere of the CF, while on the side of the straightened leg, the load on the CF is evenly distributed between the upper and lower hemispheres and is equal to one-fourth of the body weight located above the HJ level.

REFERENCES

1. Кованов В.В., Травин А.А. Хирургическая анатомия нижних конечностей. - М.: 1963. - 567 с.

2. Синельников Р.Д. Атлас анатомии человека. - В 3-х томах. - Т.1, - М.: Медицина, 1972. - 460 с.

3. Воробьев В.П. Анатомия человека: Руководство и атлас для студентов и врачей. В 3-х томах, Т.1. - М.: Медгиз, 1932. – 702 с

4. Тонков В. Анатомия человека. Общая часть. Система органов движения. - Т.1. – Л.: Медгиз, 1946. – 423 с.

5. Орлецкий А.К., Малахова С.О., Морозов А.К., Огарев Е.В. Артроскопическая хирургия тазобедренного сустава. Под ред. акад. С.П.Миронова. - М., 2004. – 104 с.

6. Byrd J.W. Operative hip arthroscopy. - New York: Thieme, 1998. – 220 p.

7. Ruhmann O., Borner C., von Lewinski G., Bohnsack M. Ligamentum teres. Orthopade. 2006. Jan; №35 (1). Р. 59-66.

8. Везалий А. Эпитоме, извлечение из своих книг о строении человеческого тела. Пер. с латин. – М.: Медицина, 1974. – 103 с.

9. Гаевская Л.И. Топографо-анатомические особенности связочного аппарата тазобедренного сустава и их значение для клиники. - Дисс. ... канд. мед. наук. – Л., 1954. – 127 с.

10. Неверов В.А., Шильников В.А. Способ формирования искусственной связки головки бедра при эндопротезировании // Вестн. хирург. 1993. № 7-12. С. 81-83.

11. Воробьев Н.А. Связка головки бедра и ее практическое значение // Вопросы травматологии и ортопедии. - Киев, 1962. - С. 174-181.

12. Юрчак В.Ф., Евтушенко В.А. Морфологические особенности тазобедренного сустава у плодов второй половины беременности // Ортопед., травматол. 1972. № 1. С. 26-32.

13. Николаев Л.Н. Роль круглой связки тазобедренного сустава // Мед. журнал. 1922. Т.3 № 1-2-3. С. 10-12.

14. Иваницкий М.Ф. Анатомия человека (с основами динамической и спортивной морфологии): Учебник для ин-тов физ. культуры. - Изд. 5-е, перераб., и доп. - М.: Физкультура и спорт, 1985. – 554 с.

15. Недригайлова О.В. Основы биомеханики опорно-двигательного аппарата в норме и при патологии // Многотомное руководство по ортопедии и травматологии. В 3-х томах, Т.1. / Под. ред. Н.П. Новаченко. - М.: Медицина, 1967. – С. 169–220.

16. Беленький В.Е. Некоторые вопросы биомеханики тазобедренного сустава. - Дисс. … канд. мед. наук. – М., 1962. – 249 с.

17. Шаповалов В.М., Шатров Н.Н., Тихилов Р.М., Штильман Н.В., Печкуров А.Л. Распределение нагрузок в тазобедренном суставе при дисплазии вертлужной впадины и остеонекрозе головки бедренной кости // Травматол. и ортопед. России. 1998. № 3. С.22-26.

18. Янсон Х.А. Биомеханика нижней конечности человека. – Рига: «Зинатне», 1975. – 324 с.

19. Bombelli R. Structure and function in normal and abnormal hip: how to rescue mechanically jeopardized hip. – 3-rd. ed., rev. and enl. p. - Berlin, Heidelberg, New York: Springer Verlag, 1993. - 221 p.

20. Pauwels F. Gesammelte Abhandlung zur funktionellen Anatomie des Bewegungsapparates – Berlin, Heidelberg, New York: Springer-verlag, 1965. – 543 p.

Authors & Affiliations

S.V. Arkhipov

Polessk Central District Hospital, Polessk, Kaliningrad oblast, 238630 Russia

External links

Arkhipov SV. On the role of the ligamentum capitis femoris in the maintenance of different types of erect posture. Human Physiology. 2008;34(1)79-85.  [researchgate.net , semanticscholar.org]

                                                                     

BLOG CONTENT

EXPERIMENTS AND OBSERVATIONS

Comments

Popular posts from this blog

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

2025SarassaC_HerreraAM

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article : Sarassa C. et al . I ntraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance S tability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes (2025). The article describes a technique for fixing the femoral head using the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2025SarassaC_HerreraAM . [ii]   Original text Abstract Background Developmental dysplasia of the hip (DDH) with complete dislocation (grade ≥III) in older patients often requires open reduction. However, achieving long-term stability remains challenging. This study introduces and evaluates a novel surgical technique, intraosseous tunneling ...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

Full access to the PDF version of the book: HUMAN CHILDREN

  Full access to the PDF version of the book is now available: Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. (In Russian)].  Google Play  ,  Google Book , drive.google.com   ,   kruglayasvyazka.blogspot.com   [Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Эссе, снабженное ссылками на интерактивный материал. 2-е изд. перераб. и доп. Йоэнсуу : Издание Автора , 2025.]   Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition. He supplemented the co-author's family legends, retellings of halluc...

2012MansmannKA

  Invention (Patent Application Publication): Mansmann KA. Tendon-sparing implants for arthroscopic replacement of hip cartilage. WO2012162571A1 (2012).  The original text of the document contained defects.   WO2012162571A1S US Inventor: Kevin A. Mansmann Worldwide applications 2012 WO Application PCT/US2012/039481 events: 2012-05-24 Application filed by Mansmann Kevin A 2012-11-29 Publication of WO2012162571A1   Tendon-sparing implants for arthroscopic replacement of hip cartilage Kevin A. Mansmann   Abstract Surgical implant devices are disclosed which will allow completely arthroscopic resurfacing of the acetabular socket, and the femoral head, in hip joints, in both humans, and in animals such as dogs. Such devices, made of flexible polymers with smooth articulating surfaces and porous anchoring surfaces, can be provided with centered openings, to allow a surgeon to spare the major ligament (the ligamentum teres) which connects the femoral head to the pelv...

1753TarinP

  Fragments from the book Tarin P. Ostéo-graphie (1753). The author notes the localization of ligamentum capitis femoris (LCF) and uses synonyms: ligament rond, ligamentum teres capitis femoris. The text is prepared for machine translation using a service built into the blog from Google or your web browser. Quote p. 24 Les Ligamens de l'extrémité inférieure sont, 1°. la Membrane capsulaire, &c. de la cavité cotyloïde, le Ligament rond, l'Appareil ligamenteux propre à cette cavité; le Ligament transveríal interne de son bord, le transversal externe, les deux Ligamens glanduleux; … Quote p. 54. Illæ tres offeæ portiones simul unitæ Cavitatem cotyloïdeam q.t. a. constituunt, in qua occurrit Foveols h. glandulas synoviales articulationis excipiens, cuique sesc inserit ligamentum teres capitis femoris, &c. Vid. t. u. v. TAB. I. II. III. External links Tarin P. Ostéo-graphie, ou Description des os de l'adulte, du foetus, &c. Precedée d'une introduction a l'etu...

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.   January 22, 2026 Full access to the PDF version of the book: Human Children January 16, 2026 The necessary is needed by no one   (facebook) January 15, 2026 Tweet of January 15, 2026      A Novel Technique for Proximal Fixation   (facebook) January 14, 2026 2026 ArkhipovSV.  THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS ( A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction ). January 05, 2026 2018YoussefAO The article describes a me thod for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_O...

Tweet of January 15, 2026

  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons.  DOI: 10.13140/RG.2.2.25269.33763   https://roundligament.blogspot.com/2026/01/the-gifts-of-magi-for-orthopedic.html Tweet of January 15, 2026 #ligamentum_teres   #hip_joint #arthroscopy #reconstruction BLOG CONTENT TWITTER OR X                                                                            

Paradox. The necessary is needed by no one

  Post in a community for patients after arthroplasty.                                                                                                          A question for the patient community from an implant designer (if the Admin allows it). Hello everyone, I have a question regarding Total Hip Replacement (THR). As many of you know, dislocations remain a serious risk after surgery. This often happens because a prosthesis lacks the natural ligament that stabilizes a healthy joint. I have developed an experimental prosthesis designed for significantly higher stability. This anti-dislocation effect is achieved by creating an "internal ligament" within the construct. Theoretically, this would allow patients to bring th...

TWITTER or X

  TWITTER OR X  (Publications on platform X or Twitter) Tweet of December 31, 2025   Tweet of December 30, 2025 Tweet of December 29, 2025 Tweet of December 19, 2025 T weet of November 20, 2025 Tweet of September 21, 2025 Tweet of August 30, 2025 Tweet of July 31, 2025 Tweet of July 28, 2025 Tweet of July 8, 2025 Tweet of June 24, 2025 Tweet of June 22, 2025   Tweet of June 20, 2025    Tweet of May 5, 2025 Tweet of May3, 2025 Tweet of April 9, 2025 Tweet of March 12, 2025   ( Survey ) Tweet of February 28, 2025 Tweet of February 22, 2025 Tweet of February 8, 2025 Tweet of January 18, 2025 Tweet of January 7, 2025 Tweet of January 4, 2025 Tweet of December 31, 2024 Tweet of October 30, 2024 Tweet of October 8, 2024 Tweet of August 5, 2024 Tweet of Jul 29, 2024  Tweet of Jul 26, 2024 Tweet of Jul 22, 2024   Tweet of Jul 17, 2024   Tweet of Jul 12, 2024   Tweet of Jul 11, 2024   Tweet of Jul 7, 2024 Tweet of Jul 6, 2024   Twe...