Skip to main content

Perthes disease. Pathogenesis

 

An original view on the pathogenesis of Perthes' disease (femoral head osteochondropathy, Legg-Calvé-Perthes disease).

By the onset of Perthes disease, the hip joint is generally formed, and the femoral head and acetabulum represent bone structures. From our perspective, the initiating factor is trauma, specifically, damage to the ligamentum capitis femoris (LCF). This can be its rupture (most commonly), detachment from its attachment point, or irreversible plastic elongation. In other words, the amount of mechanical energy acting on the LCF, at a certain moment, exceeds the amount that it can absorb. Another option is possible when individual LCF fibers are damaged. Bioeffective stresses arise and increase in it, inducing biological processes that transform the LCF (for more details, see the Law of Bioinduction). As a result, it is either permanently damaged or significantly lengthened.

Due to damage or uncompensated lengthening of the LCF, the statics and dynamics of the hip joint are disrupted. In the single-support phase of gait and in the single-support posture, it no longer functions as a second-class lever, but as a first-class lever. In the upper sector of the femoral head and acetabulum, the value of the actual average daily stresses increases, which turns out to be greater than optimal stresses. Bioeffective stresses emerge. The volume of the femoral head is smaller than the volume of the pelvic bone, therefore the magnitude of the effective stresses, and therefore the average daily stresses in it is greater. Accordingly, bioeffective stresses are higher in the head of the femur and biological processes are more active.

Due to mechanical phenomena and biological processes in the upper sector of the femoral head, an area of compression of the spongy substance is formed with its subsequent restructuring. Partially the bone tissue atrophies, its mass in the upper sector decreases. The presence of bioeffective stresses induces adaptive processes in the femoral head. The granulation tissue that appears at the site of damage through the processes of metaplasia is gradually transformed into fibrous and then into bone tissue. With a satisfactory course of adaptive processes in the head of the femur, not only qualitative, but also quantitative changes are observed. The trabecular systems are rearranged, the shape of the femoral head changes, which increases in size.

Changes in the head of the femur neutralize bioeffective stresses in it. This is achieved by eliminating zones of stress concentration, increasing the contact area of the femoral head and acetabulum, strengthening their upper sectors due to subchondral sclerosis, thickening and increasing the number of trabeculae. As these changes develop, the optimal average daily stresses for the newly formed femoral head are equalized with the actual stresses, and the bioeffective stresses are leveled. After this, the ongoing adaptive processes induced by bioeffective stresses fade away. The hip joint acquires a different structure from the norm, and the kinematics of locomotion also changes.

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, biomechanics, osteochondropathy, Perthes' disease, pathogenesis 

.                                                                     

In translating to English, the author is assisted by ChatGPT (version 3.5) and the Google Translate service.

If you notice an error, please let us know!

The first version of the text in:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. испр. и доп. изд. Калининград, 2004. (Archipov-Baltic SV. Reasoning about Morphomechanics. The norm – Kaliningrad, 2004. [Rus]) [aleph.rsl.ru

BLOG CONTENT

ETIOLOGY AND PATHOGENESIS

Comments

Popular posts from this blog

13c.Soligalich

   Soligalich , icon, Jacob wrestling with the angel ( 13 cent. ).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob wa s left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Soligalich  – Jacob Wrestling with the Angel ( 13 cent. ); original in the  leonovval...

2018WhiteBJ_HerzogMM

   Article: White BJ et al. Simultaneous acetabular labrum and ligamentum teres reconstruction: a case report (2018). A case of ligamentum capitis femoris (LCF) reconstruction using a tendon graft is described. The text in Russian is available at the following link: 2018WhiteBJ_HerzogMM . Simultaneous acetabular labrum and ligamentum teres reconstruction: a case report   White BJ, Scoles AM, Herzog MM   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract This study aims to present the surgical technique for reconstructing both the acetabular labrum and the ligamentum teres and to describe the early outcomes of this procedure in a 15-year-old male with recurrent hip instability. A 15-year-old patient with recurrent left hip dislocation, hip joint instability and failed non-operative intervention presented f...

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

2025SarassaC_HerreraAM

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article : Sarassa C. et al . I ntraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance S tability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes (2025). The article describes a technique for fixing the femoral head using the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2025SarassaC_HerreraAM . [ii]   Original text Abstract Background Developmental dysplasia of the hip (DDH) with complete dislocation (grade ≥III) in older patients often requires open reduction. However, achieving long-term stability remains challenging. This study introduces and evaluates a novel surgical technique, intraosseous tunneling ...

LCF in 2026 (January)

  L CF in 2026 ( January )   (Quotes from articles and books published in  January  2026 mentioning the ligamentum capitis femoris)   Villegas Meza, A. D., Nocek, M., Felan, N. A., Speshock, A., Bolia, I. K., & Philippon, M. J. (2025). Hip Microinstability: Current Concepts in Diagnosis, Surgical Management, and Outcomes A Narrative Review. Open Access Journal of Sports Medicine , 205-221.   [i]   tandfonline.com   ,   dovepress.com   Wang, C. H., Wang, J. H., Lin, Y. H., Shih, C. A., & Hong, C. K. (2026). An Unusual Mechanical Cause of Hip Subluxation Following Modified Dunn Procedure for Slipped Capital Femoral Epiphysis: A Case Report. Formosan Journal of Musculoskeletal Disorders , 10-4103.   [ii]     journals.lww.com   Alsaghaier, A. (2026). Results of spica cast in treatment of developmental dysplasia of the hip in children between 6-18 Months. Journal of Academic Research , 30 , 28-43.   [...

1976CrelinES

  Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Article : Crelin ES. An experimental study of hip stability in human newborn cadavers (1976). The author described an experimental study of the role of ligamentum capitis femoris (LCF) in stabilizing the hip joint and its significance for the occurrence of congenital hip dislocation. The text in Russian is available at the following link: 1976CrelinES . [ii]   Original text (in   German)   An Experimental Study of Hip Stability in Human Newborn Cadavers E. S. Crelin Sections of Gross Anatomy and Orthopaedic Surgery, Yale University School of Medicine, New Haven, Connecticut 06510 Received August 21, 1975   The less frequent variety of hip dislocation occurs before birth and may be associated with neuromuscular disorders such as arthrogr...

LCF in 2025 (August)

  LCF in 2025 ( August )   (Quotes from articles and books published in  August  2025 mentioning the ligamentum capitis femoris)   Castro, A., de Melo, C., & Leal, F. (2025). Complications in hip Arthroscopy: Recognizing and managing adverse events. Journal of Clinical Orthopaedics and Trauma , 103144.   [i]   journal-cot.com   Negayama, T., Nishimura, H., Murata, Y., Nakayama, K., Takada, S., Nakashima, H., ... & Uchida, S. (2025). Factors associated with treatment failure after hip arthroscopic surgery for the patient with femoroacetabular impingement secondary to Legg-Calvé-Perthes disease. Journal of ISAKOS , 100937.   [ii]   jisakos.com   Wegman, S. J., Shaikh, H., Brodell Jr, J. D., Cook, P. C., & Giordano, B. D. (2025). Femoral head osteochondral allograft transplantation with and without simultaneous periacetabular osteotomy: a case series. Journal of Hip Preservation Surgery , hnaf037.   [iii] ...

LCF in 2025 (July)

    LCF in 2025 ( July )   (Quotes from articles and books published in July 2025 mentioning the ligamentum capitis femoris.) Tekcan, D., Bilgin, G., & Güven, Ş. Evaluation of Risk Factors for Developmental Dysplasia of the Hip. HAYDARPAŞA NUMUNE MEDICAL JOURNAL , 65 (2), 99-103.   [i]   jag.journalagent.com   Domb, B. G., & Sabetian, P. W. (2025). Greater Trochanteric Pain Syndrome: Gluteal Tendinopathy, Partial Tear, Complete Tear, Iliotibial Band Syndrome, and Bursitis. In Orthopaedic Sports Medicine (pp. 1-17). Springer, Cham.   [ii]   link.springer.com   Kuhns, B. D., Becker, N., Patel, D., Shah, P. P., & Domb, B. G. (2025). Significant Heterogeneity in Existing Literature Limits Both Indication and Outcome Comparability Between Studies Involving Periacetabular Osteotomy For Acetabular Dysplasia With or Without Arthroscopy Despite Improvement for Both: A Systematic Review. Arthroscopy .   [iii]   ...

LCF in 2024 (September)

Publications about the LCF 2024 (September). Chen, P. L., Lu, Y. H., & Hsieh, C. P. (2024). Hip Arthroscopy-assisted Reduction for Irreducible Hip Dislocation: A Case Report.  Formosan Journal of Musculoskeletal Disorders ,  15 (3), 115-119. [i]   journals.lww.com   Domb, B. G., Owens, J. S., Lall, A. C., Harris, W. T., & Kuhns, B. D. (2024). Ten-Year Outcomes in Patients Aged 40 Years and Older After Primary Arthroscopic Treatment of Femoroacetabular Impingement With Labral Repair.  The American Journal of Sports Medicine , 03635465241270291. [ii] journals.sagepub.com   Rossi, F. W., Osman, M., & Mormile, I. (Eds.). (2024).  Prognostic and Predictive Factors in Autoimmune Connective Tissue Disorders . Frontiers Media SA. [iii] books.google.fi   Jimenez, R. Q., Walsh, E., & Domb, B. G. (2024). Revision Hip Arthroscopy: Getting It Right the Second Time.  Operative Techniques in Sports Medicine , 151108. [iv] ...

LCF in 2024 (October)

  Publications about the LCF 2024  ( October ) .   Gänsslen, A., Lindtner, R. A., Krappinger, D., & Franke, J. (2024). Pipkin fractures: fracture type-specific management. Archives of Orthopaedic and Trauma Surgery.  1-14. [i]   link.springer.com   Vesey, R. M., MacDonald, A. A., Brick, M. J., Bacon, C. J., Foo, G. L., Lu, M., ... & Woodward, R. M. (2024). Imaging characteristics of hip joint microinstability: a case–control study of hip arthroscopy patients. Skeletal Radiology.   05 Oct: 1-11.   [ii]   link.springer.com   Wu, W., Liu, M., Zhou, C., Mao, H., Wu, H., Wu, Z., & Ma, C.  (2024).  Efficacy of Outside‐In Hip Arthroscopy without Traction in the Treatment of Hip Synovial Osteochondromatosis. Orthopaedic Surgery.  9999:n/a.   [iii]   onlinelibrary.wiley.com   Yang, J., Zhang, T., Zhu, X., He, Z., Jiang, X., & Yu, S. (2024). miRNA-223-5p Inhibits Hypoxia-induced Apoptosi...