Skip to main content

Hip Osteoarthritis. Pathogenesis

 

An original view on the pathogenesis of osteoarthritis of the hip joint.

Coxarthrosis is a disease that can develop either independently or against the background of other pathological conditions: congenital hip dislocation, Perthes' disease, aseptic necrosis of the femoral head, and some others. From our point of view, the basis of its pathogenesis, as a rule, is the pathology of ligamentum capitis femoris (LCF). This may involve its complete or partial damage, changes in size, mechanical properties, and the localization of attachment areas.

The pathogenesis of coxarthrosis is a clear illustration of the Law of Bioinduction that we have established. LCF dysfunction results in disruption of normal hip mechanics. In the single-support period of the step and the single-support orthostatic position, it begins to function not as a lever of the second kind, but as a lever of the first kind. Accordingly, only the upper sectors of the femoral head and acetabulum are constantly loaded; the values of the actual average daily stresses in them significantly increase. The bioeffective stresses that arise in this case induce a complex of biological processes.

In the upper sector of the hip joint, the cartilage wears out and becomes thinner. Decentration of the femoral head and its cranial subluxation gradually develop. Microfractures of trabeculae are observed in the bone tissue. The majority of ongoing biological processes aim to neutralize bio-effective stresses. Osteophytes form on the periphery of the articular surfaces, which increases the area of their contact, and at the same time deformation of the articular ends of the bones occurs. The first and second reduce the intensity of internal forces in the bone elements. As the acetabular canal has lost its functional role, the acetabular fossa is eliminated, and the facies lunata expands.

In the subchondral layer of the femoral head, a layer of compact bone tissue appears and gradually thickens, reducing local stresses in the underlying spongy substance. There is a reorientation of the trabecular systems of the proximal end of the femur. The first system of bone trabeculae is strengthened, the second system is eliminated. Bone cysts appear and enlarge as one of the ways to eliminate stresses concentrations inside the bone at the ends of microcracks. The presence of bioeffective stresses is also reflected in soft tissues: fibrosis is observed in tendons, joint capsules and muscles, and in the areas of their attachment there are foci of heterotopic ossification.

There is a shortening of the femoral neck and an increase in the femoral neck-diaphyseal angle. The size and shape of the entire proximal femur changes, and the depth of the acetabulum increases. To a large extent, the listed phenomena are compensatory processes. In some cases, they change the actual average daily stresses, and in others, the optimal average daily stresses; the meaning of both is to level out the existing bioeffective stresses.

The mechanics of a hip joint affected by arthrosis is the mechanics of a hip joint that is devoid of LCF. In this case, the kinematics of locomotion changes significantly and their energy intensity increases. Bioeffective stresses appear not only in the hip joint area, but also in all adjacent elements of the musculoskeletal system, which leads to their pathological changes. With a reduced adaptive potential of tissues and significant violations of the mechanics of the lower limb girdle, bioeffective stresses remain uncompensated. This gradually leads to complete destruction of the hip joint, as well as gross changes in the anatomical elements of adjacent kinematic chains.

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, abductor muscle group, hip joint, biomechanics, osteoarthritis, pathogenesis

.                                                                     

In translating to English, the author is assisted by ChatGPT (version 3.5) and the Google Translate service.

If you notice an error, please let us know!

The first version of the text in:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. испр. и доп. изд. Калининград, 2004. (Archipov-Baltic SV. Reasoning about Morphomechanics. The norm – Kaliningrad, 2004. [Rus]) [aleph.rsl.ru

BLOG CONTENT

ETIOLOGY AND PATHOGENESIS

Comments

Popular posts from this blog

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

LCF in 2025 (November)

  LCF in 2025 ( November )   (Quotes from articles and books published in  October  2025 mentioning the ligamentum capitis femoris)   Awad, A., Rizk, A., ElAlfy, M., Hamed, M., Abdelghany, A. M., Mosbah, E., ... & Karrouf, G. (2025). Synergistic Effects of Hydroxyapatite Nanoparticles and Platelet Rich Fibrin on Femoral Head Avascular Necrosis Repair in a Rat Model.  Journal of Biomedical Materials Research Part B: Applied Biomaterials ,  113 (11), e35672.    [i]    onlinelibrary.wiley.com   Loughzail, M. R., Aguenaou, O., Fekhaoui, M. R., Mekkaoui, J., Bassir, R. A., Boufettal, M., ... & Lamrani, M. O. (2025). Posterior Fracture–Dislocation of the Femoral Head: A Case Report and Review of the Literature.  Sch J Med Case Rep ,  10 , 2483-2486.     [ii]    saspublishers.com  ,  saspublishers.com   Vertesich, K., Noebauer-Huhmann, I. M., Schreiner, M., Schneider, E., Willegger,...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

The First Scientific Mention

  European science has known the LCF for about 2500 years. It is the most important functional connection of the hip joint. The first person to describe the LCF was Hippocrates (c. 460-370 BCE). A written mention of the LCF is found in §1 of his treatise "On the Instrument of redactions". In our opinion, a book created in the library of the Asclepeion of the island of Kos. Hippocrates did not dissection of the human body, did not operate on the hip joint, did not have a CT scan and MRI. How he could discover the LCF? In our view, it is possible that Hippocrates treated a patient with an open hip dislocation. Track Music:  Blue Dot Sessions ,  Vittoro  (CC BY-NC 4.0 DEED / fragment) keywords: ligamentum capitis femoris, ligament of head of femur, ligamentum teres, hip dislocation .                                                     ...

1534Biblia

  Biblia, engraving, Jacob wrestling with the angel (1534).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Bible illustration – Jacob Wrestling with the Angel (1534); original in the  europeana.eu  collecti...

The Birth of the Earth

  The Birth of the Earth The solar system arose 4.5682-4.567 billion years ago (2013HazenRM). It has been found with an accuracy of 1% that the substance of the "Earth-Moon-meteorite" complex is 4.55-4.51 billion years old (2001DalrympleGB). The outlined segment is the immediate beginning of the arrangement of our Home in the Universe. One of the most important conditions for the emergence of life is liquid water (2002ChybaCF_PhillipsCB). Analysis of lithosphere particles aged 4406 (+14/-17) million years showed that they crystallized under conditions of increased water pressure (2012O'NeilJ_FrancisD). Accordingly, moisture was present no later than 160 million years after the "establishment" of the planet. The explanation for this is the proven presence of water in the accretion disk of the newborn Sun, which the Earth could have received in a volume equivalent to one to three oceans (2005DrakeMJ). According to a conservative estimate, half of the Earth's w...

1898AshhurstJ

    Report Ashhurst J. Tuberculosis of the hip joint (1898). The author discusses the function of the LCF as a supporting element of the body, its role in the development of deformity of the hip joint, reducing pressure and stress in the femoral head. The most notable quotes:  «Of course, the whole weight of the body is not sustained by this ligament, but mostly by the head of the femur in more or less close contact with the cotyloid cavity; but this ligament, I believe, serves to diminish the pressure of the pelvis upon the head of the bone, and to lessen strain. The position of the ligamentum teres is like that of the old-fasioned leather springs which used to be found in stage- coaches, the body of the coach being balanced upon two broad strong bands of leather. The pelvis is to a certain extent similarly balanced upon these ligaments on either side, which are attached to the heads of the thigh- bones, and then pass down to the lower edges of the cotyloid cavities. I b...

1996(d)ArkhipovSV

  The endoprosthesis of the femoral head ( Эндопротез головки бедренной кости ) Patent Application RU96118782A Inventor Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Application RU96118782/14A events 1996-09-20 Application filed by С.В. Архипов 1998-12-27 Publication of RU96118782A Claims The endoprosthesis of the femoral head, comprising a head connected to the intraosseous rod, characterized in that the head is formed as a hollow spherical segment, is provided with a through hole, and intramedullary rod has a longitudinal bore there through and the stiffeners, and connected to lateral extramedullary plate provided with through-cone holes which set screws with conical head connected to the extramedullary medial plate, and through the die opening intraosseous rod channel omitted flexible member of dynes end connected to the extramedullary lateral plate and the other with a fastening member. Description of the invention Description in Russian is...

Human Children. Retelling of Chapter 8

  Short retelling of chapter 1 of the essay: Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. Joensuu: Author's Edition, 2025. [In Russian]  Chapter 8. THE LAND OF NOD Cain’s family settled in the land of "Nod," where they established a "city." We propose this tribal group followed a route later known as the Great Khorasan Road, leading Cain, son of Adam, to the Kermanshah Valley in the central Zagros Mountains. There, we believe he founded the settlement of "Enoch," its remnants linked to the archaeological site of Sheikh-e Abad (34°36'42"N, 47°16'11"E). In this village, the newcomers mastered musical instruments, developed metalworking techniques, and some adopted nomadic herding, living in "tents with flocks." As a farmer, Cain likely preserved knowledge of agriculture. Favorable conditions, division of labor, and acquired skills probably fueled population growth among thes...

1190Rambam

  Fragment from the book Rambam . Guide for the Perplexed (1190). The treatise is philosophical work and an explanation of the Biblical account of creation, was written in Egypt ( sefaria.org ). The author mentions a variant of the pathology ligamentum capitis femoris (LCF, גיד) in humans.  See our commentary at the link:   1190Rambam [Rus]. Quote. [Heb] Part 3.48:6 «:וטעם 'גיד הנשה' כתוב» (original source: sefaria.org ). Translation Quote. [Eng] Part 3, Chapter 48.6 The reason why the sinew that shrank is prohibited is stated in the Law (Gen. xxxii.33).  (trans. M. Friedländer ; original source: 1956MaimonidesM, p. 371) External links Rambam . Guide for the Perplexed. Egypt, 1190. [ sefaria.org ] Maimonides M. The Guide for the Perplexed by Moses Maimonides. Transl. M. Friedländer London: Routledge & Kegan Paul Ltd. [1904] [ sacred-texts.com ] Maimonides M. The Guide for the Perplexed by Moses Maimonides. Transl. M. Friedländer London: G. Routledge & Sons...