Skip to main content

Hip Osteoarthritis. Pathogenesis

 

An original view on the pathogenesis of osteoarthritis of the hip joint.

Coxarthrosis is a disease that can develop either independently or against the background of other pathological conditions: congenital hip dislocation, Perthes' disease, aseptic necrosis of the femoral head, and some others. From our point of view, the basis of its pathogenesis, as a rule, is the pathology of ligamentum capitis femoris (LCF). This may involve its complete or partial damage, changes in size, mechanical properties, and the localization of attachment areas.

The pathogenesis of coxarthrosis is a clear illustration of the Law of Bioinduction that we have established. LCF dysfunction results in disruption of normal hip mechanics. In the single-support period of the step and the single-support orthostatic position, it begins to function not as a lever of the second kind, but as a lever of the first kind. Accordingly, only the upper sectors of the femoral head and acetabulum are constantly loaded; the values of the actual average daily stresses in them significantly increase. The bioeffective stresses that arise in this case induce a complex of biological processes.

In the upper sector of the hip joint, the cartilage wears out and becomes thinner. Decentration of the femoral head and its cranial subluxation gradually develop. Microfractures of trabeculae are observed in the bone tissue. The majority of ongoing biological processes aim to neutralize bio-effective stresses. Osteophytes form on the periphery of the articular surfaces, which increases the area of their contact, and at the same time deformation of the articular ends of the bones occurs. The first and second reduce the intensity of internal forces in the bone elements. As the acetabular canal has lost its functional role, the acetabular fossa is eliminated, and the facies lunata expands.

In the subchondral layer of the femoral head, a layer of compact bone tissue appears and gradually thickens, reducing local stresses in the underlying spongy substance. There is a reorientation of the trabecular systems of the proximal end of the femur. The first system of bone trabeculae is strengthened, the second system is eliminated. Bone cysts appear and enlarge as one of the ways to eliminate stresses concentrations inside the bone at the ends of microcracks. The presence of bioeffective stresses is also reflected in soft tissues: fibrosis is observed in tendons, joint capsules and muscles, and in the areas of their attachment there are foci of heterotopic ossification.

There is a shortening of the femoral neck and an increase in the femoral neck-diaphyseal angle. The size and shape of the entire proximal femur changes, and the depth of the acetabulum increases. To a large extent, the listed phenomena are compensatory processes. In some cases, they change the actual average daily stresses, and in others, the optimal average daily stresses; the meaning of both is to level out the existing bioeffective stresses.

The mechanics of a hip joint affected by arthrosis is the mechanics of a hip joint that is devoid of LCF. In this case, the kinematics of locomotion changes significantly and their energy intensity increases. Bioeffective stresses appear not only in the hip joint area, but also in all adjacent elements of the musculoskeletal system, which leads to their pathological changes. With a reduced adaptive potential of tissues and significant violations of the mechanics of the lower limb girdle, bioeffective stresses remain uncompensated. This gradually leads to complete destruction of the hip joint, as well as gross changes in the anatomical elements of adjacent kinematic chains.

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, abductor muscle group, hip joint, biomechanics, osteoarthritis, pathogenesis

.                                                                     

In translating to English, the author is assisted by ChatGPT (version 3.5) and the Google Translate service.

If you notice an error, please let us know!

The first version of the text in:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. испр. и доп. изд. Калининград, 2004. (Archipov-Baltic SV. Reasoning about Morphomechanics. The norm – Kaliningrad, 2004. [Rus]) [aleph.rsl.ru

BLOG CONTENT

ETIOLOGY AND PATHOGENESIS

Comments

Popular posts from this blog

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

LCF in 2025 (November)

  LCF in 2025 ( November )   (Quotes from articles and books published in  October  2025 mentioning the ligamentum capitis femoris)   Awad, A., Rizk, A., ElAlfy, M., Hamed, M., Abdelghany, A. M., Mosbah, E., ... & Karrouf, G. (2025). Synergistic Effects of Hydroxyapatite Nanoparticles and Platelet Rich Fibrin on Femoral Head Avascular Necrosis Repair in a Rat Model.  Journal of Biomedical Materials Research Part B: Applied Biomaterials ,  113 (11), e35672.    [i]    onlinelibrary.wiley.com   Loughzail, M. R., Aguenaou, O., Fekhaoui, M. R., Mekkaoui, J., Bassir, R. A., Boufettal, M., ... & Lamrani, M. O. (2025). Posterior Fracture–Dislocation of the Femoral Head: A Case Report and Review of the Literature.  Sch J Med Case Rep ,  10 , 2483-2486.     [ii]    saspublishers.com  ,  saspublishers.com   Vertesich, K., Noebauer-Huhmann, I. M., Schreiner, M., Schneider, E., Willegger,...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

2025VertesichK_ChiariC

   Content [i]   Annotation [ii]   Original text (in  German) [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments from the article: Vertesich K, Noebauer-Huhmann IM, Schreiner M, Schneider E, Willegger M, Böhler C, Windhager R, Chiari C. The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study (2025). The authors discuss the diagnosis of pathology of the ligamentum capitis femoris (LCF) based on radiological & MRI data. The text in Russian is available at the following link: 2025VertesichK_ChiariC . [ii]   Original text (in   German)   The position of the femoral fovea can indicate hip instability and highly correlates with lesions of the ligamentum teres: an observational study Klemens Vertesich, Iris-Melanie Noebauer-Huhmann, Marku...

BIBLICAL DAMAGE

  Biblical damage (Artists and sculptors on the LCF damage described in the Bible:  painting, sculpture, icon, fresco, engraving…)     386Brescia_Casket  Bas-relief. Drawing depicting the circumstances and mechanism of the LCF injury. 6c.Vienna_Genesis   Miniature. Drawing depicting the circumstances and mechanism of the LCF injury. 10c.Cross  Bas-relief. Drawing depi cting the circumstances and mechanism of the LCF injury.  1000Jacob&Archangel  Fresco. Drawing depicting the circumstances and mechanism of the LCF injury.  1050Aelfric     Drawing depicting the circumstances and mechanism of the LCF injury.  1140St.Marie-Madeleine   Capital. Drawing depicting the circumstances and mechanism of the LCF injury.  1143 Palantine_Chapel   Mosaic . Drawing depicting the circumstances and mechanism of the LCF injury. 1213L’histoire_ancienne.   M iniature . Drawing depicting the circumstances and mecha...

1898AshhurstJ

    Report Ashhurst J. Tuberculosis of the hip joint (1898). The author discusses the function of the LCF as a supporting element of the body, its role in the development of deformity of the hip joint, reducing pressure and stress in the femoral head. The most notable quotes:  «Of course, the whole weight of the body is not sustained by this ligament, but mostly by the head of the femur in more or less close contact with the cotyloid cavity; but this ligament, I believe, serves to diminish the pressure of the pelvis upon the head of the bone, and to lessen strain. The position of the ligamentum teres is like that of the old-fasioned leather springs which used to be found in stage- coaches, the body of the coach being balanced upon two broad strong bands of leather. The pelvis is to a certain extent similarly balanced upon these ligaments on either side, which are attached to the heads of the thigh- bones, and then pass down to the lower edges of the cotyloid cavities. I b...

DIAGNOSTICS AND EXAMINATION

  DIAGNOSTICS AND EXAMINATION   (Diagnostic, examination and testing methods... ) Catalog. LCF Pathology Tests   Tests for the detection of pathology LCF.  2004VialleR_GlorionC  The article discusses the examination technique for dislocation of the femur and describes the radiographic symptom of infringement of the damaged LCF. 2025VertesichK_ChiariC   The authors discuss the diagnosis of pathology of the ligamentum capitis femoris (LCF) based on radiological & MRI data. BLOG CONTENT DIAGNOSTICS AND EXAMINATION                                                                    

The Emergence of Life

THE EMERGENCE OF LIFE According to our definition, life is a way of existence of material objects capable of regulating the level of average daily mechanical stress and reproducing similar entities (2004 Архипов - БалтийскийСВ ). As can be seen, in the given definition there is no reference to protein bodies and organic compounds. Life as a special qualitative state of matter is fundamentally possible not only on the basis of carbon. At the same time, living systems with a different chemistry are unknown, as are extraterrestrial beings. The oldest potentially biogenic carbon on our planet appeared 4.10±0.01 billion years ago, and the simplest living beings appeared 4.1-3.8 billion years ago (2015BellEA_MaoWL). The split of single-celled, anucleate forms of prokaryotes (Procaryota) into bacteria (Eubacteria) and archaea (Archaebacteria) occurred about 4.0 billion years ago (2002HedgesSB). The oldest stromatolites, which are the remains of cyanobacterial communities (Cyanobacteria), bega...

The First Animals

  THE FIRST ANIMALS According to molecular clock data, the separation of the Animal Kingdom from the Plant Kingdom occurred 1609±60 Ma (2004HedgesSB_ShoeJL). Molecular estimates indicate that the last common ancestor of multicellular representatives of the fauna (Metazoa) was Neoproterozoic, most likely younger than 800 million years (2015PisaniD_LiuAG). Biomarkers of metazoan living systems identified in sedimentary deposits indicate their presence in the seas since the Cryogenian period (2018ZumbergeJA_SummonsRE), which began around approximately 720 Ma (2023CohenKM_CarN). Multicellular animals were part of early Ediacaran ecosystems and are found below layers dated to 632.5 ± 0.5 Ma (2007Yin_LHuJ). The oldest fossil of a multicellular organism resembling a sponge (Porifera) is about 600 Ma (2015YinZ_TafforeauP). The last Neoproterozoic glaciation (about 582 Ma) coincides with the appearance of complex organisms in the fossil record (2007BowringSA_AllenPA). Ev...

The First Scientific Mention

  European science has known the LCF for about 2500 years. It is the most important functional connection of the hip joint. The first person to describe the LCF was Hippocrates (c. 460-370 BCE). A written mention of the LCF is found in §1 of his treatise "On the Instrument of redactions". In our opinion, a book created in the library of the Asclepeion of the island of Kos. Hippocrates did not dissection of the human body, did not operate on the hip joint, did not have a CT scan and MRI. How he could discover the LCF? In our view, it is possible that Hippocrates treated a patient with an open hip dislocation. Track Music:  Blue Dot Sessions ,  Vittoro  (CC BY-NC 4.0 DEED / fragment) keywords: ligamentum capitis femoris, ligament of head of femur, ligamentum teres, hip dislocation .                                                     ...