Skip to main content

Hip Osteoarthritis. Pathogenesis

 

An original view on the pathogenesis of osteoarthritis of the hip joint.

Coxarthrosis is a disease that can develop either independently or against the background of other pathological conditions: congenital hip dislocation, Perthes' disease, aseptic necrosis of the femoral head, and some others. From our point of view, the basis of its pathogenesis, as a rule, is the pathology of ligamentum capitis femoris (LCF). This may involve its complete or partial damage, changes in size, mechanical properties, and the localization of attachment areas.

The pathogenesis of coxarthrosis is a clear illustration of the Law of Bioinduction that we have established. LCF dysfunction results in disruption of normal hip mechanics. In the single-support period of the step and the single-support orthostatic position, it begins to function not as a lever of the second kind, but as a lever of the first kind. Accordingly, only the upper sectors of the femoral head and acetabulum are constantly loaded; the values of the actual average daily stresses in them significantly increase. The bioeffective stresses that arise in this case induce a complex of biological processes.

In the upper sector of the hip joint, the cartilage wears out and becomes thinner. Decentration of the femoral head and its cranial subluxation gradually develop. Microfractures of trabeculae are observed in the bone tissue. The majority of ongoing biological processes aim to neutralize bio-effective stresses. Osteophytes form on the periphery of the articular surfaces, which increases the area of their contact, and at the same time deformation of the articular ends of the bones occurs. The first and second reduce the intensity of internal forces in the bone elements. As the acetabular canal has lost its functional role, the acetabular fossa is eliminated, and the facies lunata expands.

In the subchondral layer of the femoral head, a layer of compact bone tissue appears and gradually thickens, reducing local stresses in the underlying spongy substance. There is a reorientation of the trabecular systems of the proximal end of the femur. The first system of bone trabeculae is strengthened, the second system is eliminated. Bone cysts appear and enlarge as one of the ways to eliminate stresses concentrations inside the bone at the ends of microcracks. The presence of bioeffective stresses is also reflected in soft tissues: fibrosis is observed in tendons, joint capsules and muscles, and in the areas of their attachment there are foci of heterotopic ossification.

There is a shortening of the femoral neck and an increase in the femoral neck-diaphyseal angle. The size and shape of the entire proximal femur changes, and the depth of the acetabulum increases. To a large extent, the listed phenomena are compensatory processes. In some cases, they change the actual average daily stresses, and in others, the optimal average daily stresses; the meaning of both is to level out the existing bioeffective stresses.

The mechanics of a hip joint affected by arthrosis is the mechanics of a hip joint that is devoid of LCF. In this case, the kinematics of locomotion changes significantly and their energy intensity increases. Bioeffective stresses appear not only in the hip joint area, but also in all adjacent elements of the musculoskeletal system, which leads to their pathological changes. With a reduced adaptive potential of tissues and significant violations of the mechanics of the lower limb girdle, bioeffective stresses remain uncompensated. This gradually leads to complete destruction of the hip joint, as well as gross changes in the anatomical elements of adjacent kinematic chains.

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, abductor muscle group, hip joint, biomechanics, osteoarthritis, pathogenesis

.                                                                     

In translating to English, the author is assisted by ChatGPT (version 3.5) and the Google Translate service.

If you notice an error, please let us know!

The first version of the text in:

Архипов-Балтийский СВ. Рассуждение о морфомеханике. Норма. В 2 т. Т. 2. Гл. 5-6. испр. и доп. изд. Калининград, 2004. (Archipov-Baltic SV. Reasoning about Morphomechanics. The norm – Kaliningrad, 2004. [Rus]) [aleph.rsl.ru

BLOG CONTENT

ETIOLOGY AND PATHOGENESIS

Comments

Popular posts from this blog

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

LCF in 2025 (December)

  LCF in 2025 ( December)   (Quotes from articles and books published in  December  2025 mentioning the ligamentum capitis femoris)   Sarassa, C., Aristizabal, S., Mejía, R., García, J. J., Quintero, D., & Herrera, A. M. (2025). Intraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance Stability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes. Journal of Pediatric Orthopaedics , 10-1097.   [i]      journals.lww.com   Kampouridis, P., Svorligkou, G., Spassov, N., & Böhme, M. (2025). Postcranial anatomy of the Late Miocene Eurasian hornless rhinocerotid Chilotherium. PLoS One , 20 (12), e0336590.     [ii]      journals.plos.org   Burdette, T. N., Hsiou, C. L., McDonough, S. P., Pell, S., Ayers, J., Divers, T. J., & Delvescovo, B. Sidewinder syndrome associated with complete rupture of the ligamentum capitis ossis femoris in a horse. Eq...

11th-15th Century

   11th-15th Century Catalog of archived publications of the specified period        11th century 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 1012-1024Avicenna   The author writes about the localization and  variant of the pathology LCF, leading to hip dislocation. 1039-1065Giorgi Mtatsmindeli   The translator mentions the LCF damage, and notes its presence in animals. 12 th century 1120-1140Judah Halevi   The author mentions LCF (גיד) of mammals. 1176-1178(a)Rambam  The author mentions the pathology of LCF (גיד) in humans and points out the presence of this structure in animals. 1176-1178(b)Rambam  The author writes about the localization of LCF (גיד) ) and distinguishes it from a tendon,   blood vessel or nerve. 1185-1235David Kimchi  The author writes about the localization, purpose, and injury of the LCF (גיד), and also talks abo...

1883SuttonJB

  According to the author, the ligamentum capitis femoris (LCF) is a tendon of the pectineus muscle, separated from it in consequence of skeletal modifications.   THE LIGAMENTUM TERES By J. B. SUTTON, Demonstrator of Anatomy, Middlesex Hospital. (PLATE VIII.) The round ligament of the coxo-femoral articulation has long been an anatomical puzzle, consequently many diverse notions exist concerning it. Some anatomists ascribe to this hollow band of fibrous tissue very important functions in the mechanism of the hip-joint; others deprive it of all glory, simply assigning to it the menial duty of conveying blood-vessels to the head of the femur. Certain authors content themselves with a brief description of its attachments; others give elaborate and detailed accounts, extending over several pages, of its anatomy and supposed function. My object in the present communication is to show that this singular ligament is nothing more than the tendon of the pectineus muscle, sepa...

Catalog. Classifications of LCF Pathology

  The classifications are intended to systematize of ligamentum capitis femoris pathology and assist in the development of general approaches to its description, registration, analysis and treatment.   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, histology, pathological anatomy, pathology, trauma INTRODUCTION In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. The development of arthroscopic surgery has made it possible to identify various, previously undescribed types of LCF pathology, which prompted the development of various modern classifications based on intraoperative observations. Analysis of literature data and our own morphological observations allowed us to propose a General Classification of the Ligamentum Teres Pathology, which has the form of a collection of classifiers, as well as a Classification of Functions of the Ligamentum Teres. The ...

2012FrederickP_KelmanDC

   Invention (Patent): Frederick P, Belew K, Jasper L, Gatewood J, Gibson L, Masonis J, Cooper M, Kelman DC. Methods and apparatus for FAI surgeries.  US20120283840A1   (2012).   US20120283840A1 US Inventors: Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman Current Assignee: Smith and Nephew Inc Worldwide applications 2010 KR JP RU BR CA US CN EP CN WO AU 2014 US 2016 AU 2017 AU Application US13/202,612 events: 2010-02-25 Заявка подана Smith and Nephew Inc 2010-02-25 Приоритет US13/202,612 2012-11-08 Публикация US20120283840A1 2014-12-02 Заявка удовлетворена 2014-12-02 Публикация US8900320B2 Статус: Активный 2031-06-08 Измененный срок действия   Methods and apparatus for FAI surgeries Phillip Frederick, Kevin Belew, Lauren Jasper, James Gatewood, Luke Gibson, John Masonis, Michael Cooper, David C. Kelman   Abstract A partial rim implant for an acetabulum in a pelvic bone comprise...

EXTERNAL LIGAMENTS & LCF

  external ligaments & LCF First experiments to study the interaction of the external ligaments and the ligamentum capitis femoris in a model: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_6.html Pathological consequences of lengthening of the ligamentum capitis femoris: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_63.html   norm: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_50.html   #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/27/2025.                                                                                                                     BLOG CONTE...

1853KnoxR

  We publish selected quotations about ligamentum capitis femoris (LCF) from Knox  R.  Manual of Human Anatomy (1853). The author points out that LCF is a thick and dense bundle of fibers. It is attached to the edges of the acetabular notch and intertwined with the fibers of the fibrocartilaginous ring of the acetabulum. Robert Knox writes: « The functions of the round ligament have not been satisfactorily determined.» Quote p. 142 Fig. 104. - This instructive section of the hip-joint requires little or no explanation. - d points to the superior part of the capsular ligament. Fig. 105. - Capsular ligament of the hip-joint; also Poupart's ligament. - a , the capsular ligament; b , the oblique, or accessory ligament of the joint; d , attachment of the external pillar of Poupart's ligament to the tubercle of the pubis; e , deep structures immediately behind that portion of Poupart's ligament, called the ligament of Gimbernat; c , ligamentum obturatorium.   Quo...

1039-1065Giorgi Mtatsmindeli

  1009-1065Giorgi Mtatsmindeli The translator mentions the LCF damage, and notes its presence in animals. Fragment from the book Giorgi Mtatsmindeli (tran.). Old Testament. Genesis ( გიორგი მთაწმინდელი . ძველი აღთქმა . დაბადება ). The translator lived in Georgia and Greece in 1009-1065. Giorgi Mtatsmindeli has been verified by us as the earliest Georgian author to mention LCF in his work. The edition of the translation was presumably created in the Iviron Monastery on Mount Athos (Athos peninsula , Greece) after 1039/1040. Most likely, the translation of the book of the « Genesis » was made from the Greek «Septuagint». Giorgi Mtatsmindeli mentions the ligamentum capitis femoris (LCF) damage, and notes its presence in animals. The translator used the terms « ძარღუსა » and « ძარღჳ » to denote LCF ( ძარღვი = sinew). The text is prepared for machine translation using a service built into the blog from Google or your web browser.  See our commentary at the link:   1039-1065...

163-192Galen

Fragment from the treatise Galen. On anatomical procedures (Περὶ Ἀνατομικῶν Ἐγχειρήσεων, ca. 163-192). The author writes about the high resiliency and hardness of ligamentum capitis femoris (LCF), and also notes its connective function. See our commentary at the link: 163-192Galen [Rus], and  2020ArkhipovSV_ProlyginaIV . Quote [Grc] Περὶ Ἀνατομικῶν Ἐγχειρήσεων. Βιβλιον B. K εφ . ι ʹ . Αλλά χρή σε, καθάπερ επί της χειρός επεσκέψω τους συνδέσμους των οστών, ούτω και νυν επισκέψασθαι πασών των γεγυμνωμένων διαρθρώσεων, πρώτης μεν της κατ' ισχίον, εχούσης ένα μεν εν κύκλω σύνδεσμον, απάντων των άρθρων κοινόν, (ουδέν γάρ έστιν, ότω μή περιβέβληται τοιούτος σύνδεσμος,) έτερον δε τον διά του βάθους εν τη διαρθρώσει κατακεκρυμμένον, ος συνάπτει την κεφαλήν του μηρού τη κατ' ισχίον κοιλότητι, πάνυ σκληρός ών, ώς ήδη δύνασθαι λέγεσθαι νεύρον χονδρώδες. (original source: 1821KühnCG, pp. 328-329) [Lat] De Anatomicis Administrationibus. Liber II. Cap. X. Verum considerare te convenit, ut i...