Skip to main content

The Solar System

 

The Solar System

As a result of a mysterious catastrophic event about 13.8 billion years ago, the Universe was formed (2012HawkingS; 2020AghanimN_RoudierG). In it, giant cloud-like accumulations of plasma, molecules and dust became the points of star formation (2011MurrayN). A series of their generations, igniting, functioning and collapsing, led to the appearance of various chemical elements through staged reactions of nuclear fusion (1998IshkhanovBS_TutynIA).

The Sun was born for at least ten million years by compressing a concentration of molecular gas and parts of the most ancient stars (2010HanslmeierA). As a result, 4.5682-4.567 billion years ago, the Solar System self-organized, at the dawn of its life consisting of a central luminary and a protoplanetary gas and dust disk (2013HazenRM). At least the oldest meteorite inclusions were fused 4.568-4.565 billion years ago, and at most three million years later, accretion of chondrite globules occurred (1995AllègreCJ_GöpelC).

The form of life known to us is possible in the presence of liquid water, biogenic chemical elements and an energy source (2002ChybaCF_PhillipsCB). Today, Earth has these resources abundantly. Liquid oceans beneath the ice of Saturn’s moon Enceladus offer suitable conditions for life (2021AffholderA_MazevetS). A subsurface salt ocean exists on Jupiter's satellite Europa, and an analogue of terrestrial life is not excluded in it (2001ChybaCF_PhillipsCB). Numerous scientific publications based on remote sensing data and direct studies of Mars by landers and rovers indicate the presence of liquid water on the surface in the past.  Water flow and sediment deposits near the northern equatorial Chryse Planitia date to about 3.65 billion years ago (2015RodriguezJAP_GlinesN). To the north of the Hellas Basin, traces of intense erosion, probably water, are younger than 3.29 billion years (2016SaleseF_OriGG). In the Ares Valley, there are signs of floods dating back about 3.6-3.0 billion years (2010WarnerN_MullerJP). Meanwhile, Martian meteorites known as nakhlites show evidence of water alteration about 620 million years ago (2005TreimanAH).

Given these findings, Enceladus and Europa could potentially support Earth-like fish today. There is a possibility that some bottom species have developed an anatomical structure similar to ligamentum capitis femoris (LCF). The presence of developed biological forms on Mars cannot be ruled out three billion years ago. The creatures could have been aquatic, amphibious, and land-dwelling. In order for Martian species similar to terrestrial chordates to appear, evolution would have needed a significant acceleration. On our planet, LCF did not have time to arise in the first 1.5 billion years. According to molecular clock data, the separation of animals from plants occurred around 1.6 billion years ago (2004HedgesSB_ShoeJL). The appearance of fauna in the Solar System 3.0-2.9 billion years after its formation cools the rosy expectations of finding traces of LCF in the fossil history of Mars.

References

Hawking S. The Beginning of Time (lecture), 2012. [kanzeon.nl]

Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, ... Roudier G. Planck 2018 results-VI. Cosmological parameters. Astronomy & Astrophysics. 2020;641:A6. [aanda.org]

Murray N. Star formation efficiencies and lifetimes of giant molecular clouds in the Milky Way. The Astrophysical Journal. 2011;729(2)133. [iopscience.iop.org]

Ишханов БСКапитонов ИМТутынь ИАНуклеосинтез во вселенной. Москва: Издательство Московского университета, 1998. [nuclphys.sinp.msu.ru]

Hanslmeier A. Water in the Universe. Astrophysics and space science library. Vol. 368. Springer Science & Business Media, 2010. [books.google]

Hazen RM. The Origin and Evolution of Earth: From the Big Bang to the Future of Human Existence. Course Guidebook. United States of America: The great courses, 2013. [archive.org]

Allègre CJ, Manhès G, Göpel C. The age of the Earth Geochim. Cosmochim. Acta. 1995;59(8)1445-56. [sciencedirect.com]

Chyba CF, Phillips CB. Europa as an abode of life. Origins of Life and Evolution of the Biosphere. 2002;32:47-67. [link.springer.com]

Affholder A, Guyot F, Sauterey B, Ferrière R, Mazevet S. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nature Astronomy. 2021;5(8)805-14. [nature.com]

Chyba CF, Phillips CB. Possible ecosystems and the search for life on Europa. Proceedings of the National Academy of Sciences. 2001;98(3)801-4. [pnas.org 

Rodriguez JAP, Kargel JS, Baker VR, Gulick VC, Berman DC, Fairén AG, ... Glines N. Martian outflow channels: How did their source aquifers form and why did they drain so rapidly?. Scientific Reports. 2015;5(1)13404. [nature.com]

Salese F, Ansan V, Mangold N, Carter J, Ody A, Poulet F, Ori GG. A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars. Journal of Geophysical Research: Planets. 2016;121(11)2239-67. [onlinelibrary.wiley.com]

Warner N, Gupta S, Kim JR, Lin SY, Muller JP. Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars. Geology. 2010;38(1)71-4. [pubs.geoscienceworld.org]

Treiman AH. The nakhlite meteorites: Augite-rich igneous rocks from Mars. Geochemistry. 2005;65(3)203-70. [sciencedirect.com]

Hedges SB, Blair JE, Venturi ML, Shoe JL. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC evolutionary biology. 2004;4(1)1-9. [link.springer.com]

 

«Early Sun» 
The image was created in collaboration with the Image Creator service from Microsoft.


                                                                     

The original text in Russian is available at the link: Солнечная система

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

Comments

Popular posts from this blog

LCF in 2025 (September)

  LCF in 2025 ( September )   (Quotes from articles and books published in  September  2025 mentioning the ligamentum capitis femoris)   Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).   01 September 2025. PREPRINT (Version 1)  [i]   researchsquare.com   Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.   [ii]   link.springer.com   Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis , 37 (3), 171-177.    [iii]    pmc.ncbi.nlm.nih.gov      Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P....

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

0cent.4Q158.1-2

  Content [i]   Annotation [ii]   Original text [iii]   Translation [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments 1-2 of Dead Sea Scroll 4Q158.1-2, which previously contained part of Genesis 32 with a mention of ligamentum capitis femoris (LCF). We have translated the reconstructed text of M.M. Zahn (2009). The English translation is available at: 0 cent .4 Q 158.1-2 . [ii]   Original text Photocopy   Dead Sea Scroll 4Q158, fragments 1-2 (Plate 138, Frag. 4 B-358482), material – parchment, text – Hebrew, period – Herodian. A screenshot of the original from The Leon Levy dead sea scrolls Digital Library collection, © 2025 Israel Antiquities Authority  deadseascrolls.org.il   (Fair use for criticism, study and comparison; sharpening, color correction, and captions done by us.).   Transcription Dead Sea Scroll 4Q158, fragments 1-2, lines 11...

Grok. Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?".

  At our request, Grok, artificial intelligence developed by xAI, wrote a review of the article by Arkhipov SV. Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint ([Ru]  Архипов СВ . Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе. 06.04.2025 ). In accordance with the comments, the article was revised and sent for re-review to the ChatGPT language model prepared to assist in the analysis and editing of texts (OpenAI, 2025).  Below is the original text of the review by Grok: Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?: A Note on the Mysterious 'Dark Matter' of the Hip Joint". This review focuses on the analysis of argumentation, as requested. The author asserts that restoration of the acetabular labrum fails to prevent hip joint instability and osteoarthritis when the ligame...

LCF in 2025 (August)

  LCF in 2025 ( August )   (Quotes from articles and books published in  August  2025 mentioning the ligamentum capitis femoris)   Castro, A., de Melo, C., & Leal, F. (2025). Complications in hip Arthroscopy: Recognizing and managing adverse events. Journal of Clinical Orthopaedics and Trauma , 103144.   [i]   journal-cot.com   Negayama, T., Nishimura, H., Murata, Y., Nakayama, K., Takada, S., Nakashima, H., ... & Uchida, S. (2025). Factors associated with treatment failure after hip arthroscopic surgery for the patient with femoroacetabular impingement secondary to Legg-Calvé-Perthes disease. Journal of ISAKOS , 100937.   [ii]   jisakos.com   Wegman, S. J., Shaikh, H., Brodell Jr, J. D., Cook, P. C., & Giordano, B. D. (2025). Femoral head osteochondral allograft transplantation with and without simultaneous periacetabular osteotomy: a case series. Journal of Hip Preservation Surgery , hnaf037.   [iii] ...

2008HeinerG

  Invention (Patent Application Publication): Heiner G. Implant as an intermediate layer between articulating joint surfaces. DE102007018341A1 (2008). [ translated from German ]   DE102007018341A1 Germany Inventor: Heiner Genrich Current Assignee: Individual Worldwide applications 2007 DE Application DE102007018341A events: 2007-04-13 Application filed by Individual 2007-04-13 Priority to DE102007018341A 2008-10-16 Publication of DE102007018341A1 Status: Ceased   Implant as an intermediate layer between articulating joint surfaces Heiner Genrich   Abstract A surgical implant is an interface between two articulated surfaces together forming a ball and socket joint. The articulation surface (1) and the facing bone surface (2) whose edge (13) is thinner than the centre section (15). The surface (2) matches that of the damaged bone surface. Description The The invention relates to an implant as intermediate between articulating articular surfaces, wherein the intermed...

1541MondinoL_DryanderJ

  Fragment from the book Mondino de Luzzi, Dryander J. Anatomia Mundini (1541). An early description of the anatomy and role of the ligamentum capitis femoris (LCF) is presented. The pathogenesis of lameness and soft tissue atrophy in LCF pathology is discussed. For more details, see the commentary in  1541MondinoL_DryanderJ [Rus] .  Quote p. 62. [Lat] De anatomia cruris [&] pedis. Postea eleua musculos & chordas &, uide ossa. Et primura est os foemoris supra quod fabricatae sunt spondiles dorsi: & per consequens totum corpus in parte inferiori habet pixidem quondam, in cuius concauitate locata est extremitas rotunda canna coxae, que uocatur uertebrum. Et in medio amborum in parte anteriori est quod dam ligamentum, quod aliomodo porestuocari uertebrum: & quando hoc uel primum resilit foras: tunc niecesse ed hominem claudicare, quia crus hic elongatur & firmari non potest; & totum non bene potest supportari: & necesse eit etiam ut crus tab...

1993ArkhipovSV

  The publication describes the design of a total hip joint endoprosthesis, which became a prototype of an artificial hip joint with analogous to the ligamentum capitis femoris (LCF). Complete hip joint prosthesis designed by S.V. Arkhipova (Полный протез тазобедренного сустава конструкции С.В. Архипова ) Patent RU2089135 Inventor  Sergey Vasilyevich Arkhipov Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Сергей Васильевич Архипов 1993-12-30 Application filed by Сергей Васильевич Архипов 1993-12-30 Priority to RU93057862A 1996-07-27 Publication of RU93057862A 1997-09-10 Application granted 1997-09-10 Publication of RU2089135C1 Abstract FIELD: medicine; prosthetics. SUBSTANCE: proposed complete prosthesis for hip joint comprises femoral component and acetabular components, both components being interconnected by pivot. Outer surface of acetabular component is provided with threads and grooves. Shank is made in form of collet chuck, tabs of whi...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», August 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

17c.FranckenFII

  Frans Francken II , painting Jacob Wrestling with the Angel (16 – 17th cent.).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Frans  Francken II  –  Jacob Wrestling with the Angel  (16 – 17t...