Skip to main content

Australopithecus afarensis

 

AUSTRALOPITHECUS AFARENSIS

In 1735, Carl Linnaeus (1707-1778) placed humans as a species «Homo nosce te ipsum» in the order Anthropomorpha along with monkeys and sloths (1735LinneC). In a publication in 1758, the naturalist transferred humans to the order Primates (1758LinneC). Today, humans and chimpanzees are united in the tribe Hominini, as descended from a common ancestor (2001GrovesCP). It has been established that the chromosome that distinguishes humans from monkeys was formed before 4.5 Ma (2022PoszewieckaB_GambinA). The hominin subfamily Sahelanthropus tchadensis lived in the Republic of Chad (Central Africa) from 7.2±0.31 to 6.8±0.45 Ma (2008LebatardAE_BrunetM; 2012ReynoldsSC_GallagherA). Reconstruction of its musculoskeletal system showed that the creature could have been an upright bipedal primate (2005ZollikoferCP_BrunetM). Fossils of what is probably the first bipedal representative of the hominid family Orrorin tugenensis, lived 6.1-5.7 Ma and still retained adaptations for climbing, have been discovered in Kenya (East Africa) (2001SenutB_CoppensY; 2006SawadaY_IshidaH; 2008RichmondBG_JungersWL).

Fragments of the skeleton of Ardipithecus kadabba, belonging to the tribe Hominini, are dated to 5.7-5.5 Ma (2009WhiteTD_WoldeGabrielG). The age of fossil bones of another specimen of the same genus Ardipithecus ramidus is 4.4 million years (2015WhiteTD_SuwaG). Australopithecus anamensis is a key species that seems to have given rise to the genus Homo, lived 4.2-4.1 Ma (2020BobeR_CarvalhoS). The evolutionary tree of hominids shows that Australopithecus anamensis gave rise to Australopithecus afarensis, and it was replaced by Australopithecus africanus (2012ШулимоваЕА).

The oldest parts of the supporting elements of the body of Australopithecus afarensis from Ethiopia (East Africa) are dated to the period 3.8-3.6 Ma (2010 Haile-Selassie Y). The cult remains of a female specimen of the mentioned species, conventionally designated «Lucy», are slightly younger - 3.2 million years (1994 Kimbel WH_Rak Y; 2004 Johanson DC).

Australopithecus afarensis, reconstruction by M. L. Butovskaya; exposition of the Orlov Paleontological Museum (Moscow); photo by the author.

The list of its skeletal elements includes a part of the pelvic bone and the left femur. Each of them has reliable features of the ligamentum capitis femoris (LCF) that was present: the acetabular fossa, the acetabular notch, and the femoral head fossa.

Cast of the pelvis of a female Australopithecus afarensis (Lucy); exposition of the Orlov Paleontological Museum (Moscow); photo by the author.

Left femur of a female Australopithecus afarensis (Lucy); epoxy resin cast, material of the educational collection of the Archaeology Research Laboratories of the University of North Carolina at Chapel Hill (model by Steve Davis). [sketchfab.com]


A notable feature is the elongated acetabular fossa, which has a small transverse size.

Left acetabulum (external view) of the pelvis of a female Australopithecus afarensis (Lucy); Epoxy resin casting, material from the teaching collection of the Archaeology Research Laboratories, University of North Carolina at Chapel Hill (model by Steve Davis). [sketchfab.com]

This observation suggests that Australopithecus afarensis had a smaller range of pronation and supination than modern humans.

References

von Linne C. Systema naturae, sive, regna tria naturae, systematice proposita per classes, ordines, genera, & species. Lugduni batavorum: T. Haak, 1735. [books.google]

von Linne C. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. T. 1-2. Holmiae: Impensis Direct. Laurentii Salvii, 1758.

Groves CP. Towards a taxonomy of the Hominidae. In: Humanity from African Naissance to Coming Millennia. In: Tobias PV, Raath MA, Moggi-Cecchi J, Doyle GA (Eds). Colloquia in Human biology and Palaeonthropology. Firenze: Firenze University Press, 2001:291-7. [library.oapen.org]

Poszewiecka B, Gogolewski K, Stankiewicz P, Gambin A. Revised time estimation of the ancestral human chromosome 2 fusion. BMC genomics. 2022;23(6)1-16. [link.springer.com]

Reynolds SC, Gallagher A (Eds). African genesis: perspectives on hominin evolution. Vol. 62. Cambridge: Cambridge University Press, 2012. [books.google]

Lebatard AE, Bourlès DL, Duringer P, Jolivet M, Braucher R, Carcaillet J, ... Brunet M. Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad. Proceedings of the National Academy of Sciences. 2008;105(9)3226-31. [pnas.org]

Zollikofer CP, Ponce de León MS, Lieberman DE, Guy F, Pilbeam D, Likius A, Mackaye HT, Vignaud P, Brunet M. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature. 2005;434(7034)755-9. [doc.rero.ch]

Senut B, Pickford M, Gommery D, Mein P, Cheboi K, Coppens Y. First hominid from the Miocene (Lukeino formation, Kenya). Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science. 2001;332(2)137-44. [academia.edu]

Richmond BG, Jungers WL. Orrorin tugenensis Femoral Morphology and the Evolution of Hominin Bipedalism. Science. 2008;319(5870)1662-5. [doc.rero.ch]

Sawada Y, Saneyoshi M, Nakayama K, Sakai T, Itaya T, Hyodo M ... Ishida H. The ages and geological backgrounds of Miocene hominoids Nacholapithecus, Samburupithecus, and Orrorin from Kenya. In: Ishida H, Tuttle R, Pickford M, Ogihara N, Nakatsukasa M (Eds). Human origins and environmental backgrounds: Boston: Springer-Verlag, 2006:71-96. [link.springer.com]

White TD, Asfaw B, Beyene Y, Haile-Selassie Y, Lovejoy CO, Suwa G, WoldeGabriel G. Ardipithecus ramidus and the paleobiology of early hominids. Science. 2009;326(5949)64-86. [courses.edx.org]

White TD, Lovejoy CO, Asfaw B, Carlson JP, Suwa G. Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Sciences. 2015;112(16)4877-84. [pnas.org]

Bobe R, Manthi FK, Ward CV, Plavcan JM, Carvalho S. The ecology of Australopithecus anamensis in the early Pliocene of Kanapoi, Kenya. Journal of human evolution. 2020;140:102717. [ora.ox.ac.uk]

Шулимова ЕА. Australopithecus anamensis: история открытия видаКубанские исторические чтения. Материалы III Всероссийской с международным участием научно-практической конференции. Краснодар, 2012:4-9. [elibrary.ru]

Haile-Selassie Y. Phylogeny of early Australopithecus: new fossil evidence from the Woranso-Mille (central Afar, Ethiopia). Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1556)3323-31.  [pmc.ncbi.nlm.nih.gov]

Kimbel WH, Johanson DC, Rak Y. The first skull and other new discoveries of Australopithecus afarensis at Hadar, Ethiopia. Nature. 1994;368(6470)449-51. [nature.com]

Johanson DC. Lucy, thirty years later: an expanded view of Australopithecus afarensis. Journal of anthropological research. 2004;60(4)465-86. [journals.uchicago.edu]


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, doctrine, animals, monkey, homo, australopithecus


                                                                     

The original text in Russian is available at the link: Australopithecus afarensis

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7



Comments

Popular posts from this blog

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.  January 05, 2026 2018YoussefAO The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_OkaetR The authors demonstrated in the experiment that the strength of the LCF is sufficient to ensure early stability during hip joint reconstruction in children. January 04, 2026 2008 BacheCE _TorodeIP The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation .  2021PaezC_WengerDR The ar ticle analyzes the results of open reconstruction of LCF in dysplasia.   2008DoddsMK...

IMPROVING POSTOPERATIVE COMFORT...

  Enhancing  Posto perative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical mode...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

LCF in 2025 (June)

  LCF in 2025 ( June )   (Quotes from articles and books published in June 2025 mentioning the ligamentum capitis femoris)   Kuhns, B. D., Kahana-Rojkind, A. H., Quesada-Jimenez, R., McCarroll, T. R., Kingham, Y. E., Strok, M. J., ... & Domb, B. G. (2025). Evaluating a semiquantitative magnetic resonance imaging-based scoring system to predict hip preservation or arthroplasty in patients with an intact preoperative joint space.  Journal of Hip Preservation Surgery , hnaf027.    [i]     academic.oup.com   Iglesias, C.  J. B., García, B. E. C., & Valarezo, J. P. P. (2025) CONTROLLED GANZ DISLOCATION.   EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal. 11(5)1410-13. DOI: 10.36713/epra2013    [ii]       researchgate.net   Guimarães, J. B., Arruda, P. H., Cerezal, L., Ratti, M. A., Cruz, I. A., Morimoto, L. R., ... & Ormond Filho, A. G. (2025). Hip Microins...

Catalog. Classifications of LCF Pathology

  The classifications are intended to systematize of ligamentum capitis femoris pathology and assist in the development of general approaches to its description, registration, analysis and treatment.   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, histology, pathological anatomy, pathology, trauma INTRODUCTION In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. The development of arthroscopic surgery has made it possible to identify various, previously undescribed types of LCF pathology, which prompted the development of various modern classifications based on intraoperative observations. Analysis of literature data and our own morphological observations allowed us to propose a General Classification of the Ligamentum Teres Pathology, which has the form of a collection of classifiers, as well as a Classification of Functions of the Ligamentum Teres. The ...

1834MitchellE_KnoxR

Description and drawings of the proximal attachment and blood supply of the ligamentum capitis femoris (LCF) from book Mitchell E, Knox R. Engravings of the ligaments (1834 ). PLATE VI   PLATE VI. … 49. The round ligament of the hip-joint, which arises from the sinus in the bottom of the acetabulum and descends into the head of the femur. 50. A portion of it which is thinner and membranous. 51. Portion of a ligament which arises from the outer surface of the ischiatic cavity and surrounds its neck as far as the notch of the acetabulum; there however it makes its way into the acetabulum, passing under the arch of the cotyloid ligament. 52. Branch of the obturator artery. 53.   Two twigs which penetrate into the cotyloid cavity along with the ligament 51, to mingle with the round ligament.   PLATE VII PLATE VII. Fig. 1. … 19, 19. Remarkable glands, which are concealed in the sinus of the acetabulum. 20. Origin of the exterior ligament which arises fr...

11th-15th Century

   11th-15th Century Catalog of archived publications of the specified period        11th century 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 1012-1024Avicenna   The author writes about the localization and  variant of the pathology LCF, leading to hip dislocation. 1039-1065Giorgi Mtatsmindeli   The translator mentions the LCF damage, and notes its presence in animals. 12 th century 1120-1140Judah Halevi   The author mentions LCF (גיד) of mammals. 1176-1178(a)Rambam  The author mentions the pathology of LCF (גיד) in humans and points out the presence of this structure in animals. 1176-1178(b)Rambam  The author writes about the localization of LCF (גיד) ) and distinguishes it from a tendon,   blood vessel or nerve. 1185-1235David Kimchi  The author writes about the localization, purpose, and injury of the LCF (גיד), and also talks abo...

1724FabriciusJA

Fragments from the book Fabricius JA. Bibliothecae Graecae volume duodecimum (1724). The author quotes the Byzantine physician Theophilus Protospatharius, who supposedly lived between the 7th and 10th centuries. Selected passages provide views on the normal anatomy of the ligamentum capitis femoris (LCF) and its inherent connective function.   [Grc] θεοφιλος ο Πρωτοσπαθάριος . Περὶ τῆς τοῦ ανθρώπου κατασκευῆς . Βιβλιον Ε . XIII, [p. 892] (see fig.) [Lat] Theophilus Protospatharius. De corporis humani fabrica, Liber quintus, Cap. XIII [p. 892] 1) Dei erga homines amor ex heminae fundo teretem nervum promisit, cartilaginosum vinculum femoris capiti insertum adstringensque, ne facile elabatur:» 2) inde ex heminae oris aliae copulae oriuntur, totum femoris caput in orbem constringentes, non teretes & solae, qualis quae ex fundo porrigitur, sed latae, valenter que heminae oras ad commissurae praesidium ambientes.   Translation [Eng] 1) For the sake ...

190-230Mishnah Chullin

  Tractate Mishnah Chullin was written between about 190 - 230 in Israel and discuss laws related to consumption of meat. The selected quotes talk about the presence of ligamentum capitis femoris (LCF) in different animals, its location and distal attachment site. See our commentary at the link: 190-230Mishnah Chullin [Rus]. Quote 1. [Heb] Mishnah Chullin 7:1 (original source:  sefaria.org ) Quote 2. [Heb] Mishnah Chullin 7:2 (original source:  sefaria.org ) Quote 3. [Heb] Mishnah Chullin 7:3 (original source:  sefaria.org ) Quote 4. [Heb] Mishnah Chullin 7:4 (original source:  sefaria.org ) Quote 5. [Heb] Mishnah Chullin 7:5 (original source:  sefaria.org ) Quote 6. [Heb] Mishnah Chullin 7:6 (original source:  sefaria.org ) Translation Quote 1. [Eng] Mishnah Chullin 7:1 The prohibition of eating the sciatic nerve applies both in Eretz Yisrael and outside of Eretz Yisrael, in the presence of, i.e., the time of, the Temple and not in the presence of th...