Skip to main content

1918GrayH


Fragments from the book Gray H. Anatomy, descriptive and surgical (1918; 20th ed.). The selected passages on the anatomy of the ligamentum capitis femoris (LCF) and color illustrations. 

Fig. 235. — Right hip bone. External surface.


Quote p. 237

The Acetabulum (cotyloid cavity). — The acetabulum is a deep, cup-shaped, hemispherical depression, directed downward, lateralward, and forward. It is formed medially by the pubis, above by the ilium, laterally and below by the ischium; a little less than two-fifths is contributed by the ilium, a little more than two-fifths by the ischium, and the remaining fifth by the pubis. It is bounded by a prominent uneven rim, which is thick and strong above, and serves for the attachment of the glenoidal labrum (cotyloid ligament), which contracts its orifice, and deepens the surface for articulation. It presents below a deep notch, the acetabular notch, which is continuous with a circular non-articular depression, the acetabular fossa, at the bottom of the cavity: this depression is perforated by numerous apertures, and lodges a mass of fat. The notch is converted into a foramen by the transverse ligament; through the foramen nutrient vessels and nerves enter the joint; the margins of the notch serve for the attachment of the ligamentum teres. The rest of the acetabulum is formed by a curved articular surface, the lunate surface, for articulation with the head of the femur. 

Fig. 243. — Upper extremity of right femur viewed from behind and above.


Quote p. 243

The Head (caput femoris). — The head which is globular and forms rather more than a hemisphere, is directed upward, medialward, and a little forward, the greater part of its convexity being above and in front. Its surface is smooth, coated with cartilage in the fresh state, except over an ovoid depression, the fovea capitis femoris, which is situated a little below and behind the center of the head, and gives attachment to the ligamentum teres. 

Fig. 244. — Right Femur. Anterior Surface. [fragment]


Quote p. 333 

I. Coxal Articulation or Hip-joint (Articulatio Coxae).

This articulation is an enarthrodial or ball-and-socket joint, formed by the reception of the head of the femur into the cup-shaped cavity of the acetabulum. The articular cartilage on the head of the femur, thicker at the center than at the circumference, covers the entire surface with the exception of the fovea capitis femoris, to which the ligamentum teres is attached; that on the acetabulum forms an incomplete marginal ring, the lunate surface. Within the lunate surface there is a circular depression devoid of cartilage, occupied in the fresh state by a mass of fat, covered by synovial membrane. The ligaments of the joint are:

The Articular Capsule.

The Iliofemoral.

The Ischiocapsular.

The Pubocapsular.

The Ligamentum Teres Femoris.

The Glenoidal Labrum.

The Transverse Acetabular. 

Fig. 339. — Right hip-joint from the front. (Spalteholz.)

 

Fig. 340. — Right hip-joint from behind. (Quain.)


Quote p. 336

The Ligamentum Teres Femoris (Fig. 341), — The ligamentum teres femoris is a triangular, somewhat flattened band implanted by its apex into the antero-superior part of the fovea capitis femoris; its base is attached by two bands, one into either side of the acetabular notch, and between these bony attachments it blends with the transverse ligament. It is ensheathed by the synovial membrane, and varies greatly in strength in different subjects; occasionally only the synovial fold exists, and in rare cases even this is absent. The ligament is made tense when the thigh is semiflexed and the limb then adducted or rotated outward; it is, on the other hand, relaxed when the limb is abducted. It has, however, but little influence as a ligament. 

Fig. 341. — Left hip-joint, opened by removing
the floor of the acetabulum from within the pelvis.

Fig. 342. — Hip-joint, front view. The capsular ligament has been largely removed.

Quote p. 338

Synovial Membrane (Fig. 343). — The synovial membrane is very extensive. Commencing at the margin of the cartilaginous surface of the head of the femur, it covers the portion of the neck which is contained within the joint; from the neck it is reflected on the internal surface of the capsule, covers both surfaces of the glenoidal labrum and the mass of fat contained in the depression at the bottom of the acetabulum, and ensheathes the ligamentum teres as far as the head of the femur. The joint cavity sometimes communicates through a hole in the capsule between the vertical band of the iliofemoral ligament and the pubocapsular ligament with a bursa situated on the deep surfaces of the Psoas major and Iliacus. 

Fig. 343. — Capsule of hip-joint (distended). Posterior aspect.

Fig. 344. — Structures surrounding right hip-joint.

Quote p. 338-339 

Movements. — The movements of the hip are very extensive, and consist of flexion, extension, adduction, abduction, circumduction, and rotation.

The length of the neck of the femur and its inclinations to the body of the bone have the effect of converting the angular movements of flexion, extension, adduction, and abduction partially into rotatory movements in the joint. Thus when the thigh is flexed or extended, the head of the femur, on account of the medial inclination of the neck, rotates within the acetabulum with only a slight amount of gliding to and fro. The forward slope of the neck similarly affects the movements of adduction and abduction. Conversely rotation of the thigh which is permitted by the upward inclination of the neck, is not a simple rotation of the head of the femur in the acetabulum, but is accompanied by a certain amount of gliding.

The hip-joint presents a very striking contrast to the shoulder-joint in the much more complete mechanical arrangements for its security and for the limitation of its movements. In the shoulder, as has been seen, the head of the humerus is not adapted at all in size to the glenoid cavity, and is hardly restrained in any of its ordinary movements by the capsule. In the hip-joint, on the contrary, the head of the femur is closely fitted to the acetabulum for an area extending over nearly half a sphere, and at the margin of the bony cup it is still more closely embraced by the glenoidal labrum, so that the head of the femur is held in its place by that ligament even when the fibers of the capsule have been quite divided. The iliofemoral ligament is the strongest of all the ligaments in the body, and is put oi) the stretch by any attempt to extend the femur beyond a straight line with the trunk. That is to say, this ligament is the chief agent in maintaining the erect position without muscular fatigue; for a vertical Une passing through the center of gravity of the trunk falls behind the centers of rotation in the hip-joints, and therefore the pelvis tends to fall backward, but is prevented by the tension of the iliofemoral ligaments. The security of the joint may be provided for also by the two bones being directly united through the ligamentum teres; but it is doubtful whether this ligament has much influence upon the mechanism of the joint. When the knee is flexed, flexion of the hip-joint is arrested by the soft parts of the thigh and abdomen being brought into contact, and when the knee is extended, by the action of the hamstring muscles; extension is checked by the tension of the iliofemoral ligament; adduction by the thighs coming into contact; adduction with flexion by the lateral band of the iliofemoral ligament and the lateral part of the capsule; abduction by the medial band of the iliofemoral ligament and the pubocapsular ligament ; rotation outward by the lateral band of the iliofemoral ligament; and rotation inward by the ischiocapsular ligament and the hinder part of the capsule. The muscles which flex the femur on the pelvis are the Psoas major, Iliacus, Rectus femoris, Sartorius, Pectineus, Adductores longus and brevis, and the anterior fibers of the Glutaei medius and minimus. Extension is mainly performed by the Glutseus maximus, assisted by the hamstring muscles and the ischial head of the Adductor magnus. The thigh is adducted by the Adductores magnus, longus, and brevis, the Pectineus, the Gracilis, and lower part of the Glutseus maximus, and abducted by the Glutaei medius and minimus, and the upper part of the Glutseus maximus. The muscles which rotate the thigh inward are the Glutseus minimus and the anterior fibers of the Glutajus medius, the Tensor fascise latae and the Iliacus and Psoas major; while those which rotate it outward are the posterior fibers of the Glutseus medius, the Piriformis, Obturatores externus and internus, Gemelli superior and inferior, Quadratus femoris, Glutseus maximus, the Adductores longus, brevis, and magnus, the Pectineus, and the Sartorius.



External links

Gray H. Anatomy, descriptive and surgical; 20th ed. Philadelphia, New York: Lea & Febiger, 1918. [archive.org]

Authors & Affiliations

Henry Gray (1825-1861) was a British anatomist and surgeon. [wikipedia.org] 

Henry Gray
Author: H. Pollock, unknown date;
original in the 
wikimedia.org collection (CC BY 4.0, no changes).

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, functions

                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

MORPHOLOGY AND TOPOGRAPHY

Comments

Popular posts from this blog

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.  January 05, 2026 2018YoussefAO The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_OkaetR The authors demonstrated in the experiment that the strength of the LCF is sufficient to ensure early stability during hip joint reconstruction in children. January 04, 2026 2008 BacheCE _TorodeIP The article describes a method for transposition of the proximal attachment of the LCF in congenital hip dislocation .  2021PaezC_WengerDR The ar ticle analyzes the results of open reconstruction of LCF in dysplasia.   2008DoddsMK...

IMPROVING POSTOPERATIVE COMFORT...

  Enhancing  Posto perative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical mode...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

LCF in 2025 (June)

  LCF in 2025 ( June )   (Quotes from articles and books published in June 2025 mentioning the ligamentum capitis femoris)   Kuhns, B. D., Kahana-Rojkind, A. H., Quesada-Jimenez, R., McCarroll, T. R., Kingham, Y. E., Strok, M. J., ... & Domb, B. G. (2025). Evaluating a semiquantitative magnetic resonance imaging-based scoring system to predict hip preservation or arthroplasty in patients with an intact preoperative joint space.  Journal of Hip Preservation Surgery , hnaf027.    [i]     academic.oup.com   Iglesias, C.  J. B., García, B. E. C., & Valarezo, J. P. P. (2025) CONTROLLED GANZ DISLOCATION.   EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal. 11(5)1410-13. DOI: 10.36713/epra2013    [ii]       researchgate.net   Guimarães, J. B., Arruda, P. H., Cerezal, L., Ratti, M. A., Cruz, I. A., Morimoto, L. R., ... & Ormond Filho, A. G. (2025). Hip Microins...

Catalog. Classifications of LCF Pathology

  The classifications are intended to systematize of ligamentum capitis femoris pathology and assist in the development of general approaches to its description, registration, analysis and treatment.   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, histology, pathological anatomy, pathology, trauma INTRODUCTION In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. The development of arthroscopic surgery has made it possible to identify various, previously undescribed types of LCF pathology, which prompted the development of various modern classifications based on intraoperative observations. Analysis of literature data and our own morphological observations allowed us to propose a General Classification of the Ligamentum Teres Pathology, which has the form of a collection of classifiers, as well as a Classification of Functions of the Ligamentum Teres. The ...

1834MitchellE_KnoxR

Description and drawings of the proximal attachment and blood supply of the ligamentum capitis femoris (LCF) from book Mitchell E, Knox R. Engravings of the ligaments (1834 ). PLATE VI   PLATE VI. … 49. The round ligament of the hip-joint, which arises from the sinus in the bottom of the acetabulum and descends into the head of the femur. 50. A portion of it which is thinner and membranous. 51. Portion of a ligament which arises from the outer surface of the ischiatic cavity and surrounds its neck as far as the notch of the acetabulum; there however it makes its way into the acetabulum, passing under the arch of the cotyloid ligament. 52. Branch of the obturator artery. 53.   Two twigs which penetrate into the cotyloid cavity along with the ligament 51, to mingle with the round ligament.   PLATE VII PLATE VII. Fig. 1. … 19, 19. Remarkable glands, which are concealed in the sinus of the acetabulum. 20. Origin of the exterior ligament which arises fr...

11th-15th Century

   11th-15th Century Catalog of archived publications of the specified period        11th century 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 1012-1024Avicenna   The author writes about the localization and  variant of the pathology LCF, leading to hip dislocation. 1039-1065Giorgi Mtatsmindeli   The translator mentions the LCF damage, and notes its presence in animals. 12 th century 1120-1140Judah Halevi   The author mentions LCF (גיד) of mammals. 1176-1178(a)Rambam  The author mentions the pathology of LCF (גיד) in humans and points out the presence of this structure in animals. 1176-1178(b)Rambam  The author writes about the localization of LCF (גיד) ) and distinguishes it from a tendon,   blood vessel or nerve. 1185-1235David Kimchi  The author writes about the localization, purpose, and injury of the LCF (גיד), and also talks abo...

1724FabriciusJA

Fragments from the book Fabricius JA. Bibliothecae Graecae volume duodecimum (1724). The author quotes the Byzantine physician Theophilus Protospatharius, who supposedly lived between the 7th and 10th centuries. Selected passages provide views on the normal anatomy of the ligamentum capitis femoris (LCF) and its inherent connective function.   [Grc] θεοφιλος ο Πρωτοσπαθάριος . Περὶ τῆς τοῦ ανθρώπου κατασκευῆς . Βιβλιον Ε . XIII, [p. 892] (see fig.) [Lat] Theophilus Protospatharius. De corporis humani fabrica, Liber quintus, Cap. XIII [p. 892] 1) Dei erga homines amor ex heminae fundo teretem nervum promisit, cartilaginosum vinculum femoris capiti insertum adstringensque, ne facile elabatur:» 2) inde ex heminae oris aliae copulae oriuntur, totum femoris caput in orbem constringentes, non teretes & solae, qualis quae ex fundo porrigitur, sed latae, valenter que heminae oras ad commissurae praesidium ambientes.   Translation [Eng] 1) For the sake ...

190-230Mishnah Chullin

  Tractate Mishnah Chullin was written between about 190 - 230 in Israel and discuss laws related to consumption of meat. The selected quotes talk about the presence of ligamentum capitis femoris (LCF) in different animals, its location and distal attachment site. See our commentary at the link: 190-230Mishnah Chullin [Rus]. Quote 1. [Heb] Mishnah Chullin 7:1 (original source:  sefaria.org ) Quote 2. [Heb] Mishnah Chullin 7:2 (original source:  sefaria.org ) Quote 3. [Heb] Mishnah Chullin 7:3 (original source:  sefaria.org ) Quote 4. [Heb] Mishnah Chullin 7:4 (original source:  sefaria.org ) Quote 5. [Heb] Mishnah Chullin 7:5 (original source:  sefaria.org ) Quote 6. [Heb] Mishnah Chullin 7:6 (original source:  sefaria.org ) Translation Quote 1. [Eng] Mishnah Chullin 7:1 The prohibition of eating the sciatic nerve applies both in Eretz Yisrael and outside of Eretz Yisrael, in the presence of, i.e., the time of, the Temple and not in the presence of th...