Skip to main content

1918GrayH


Fragments from the book Gray H. Anatomy, descriptive and surgical (1918; 20th ed.). The selected passages on the anatomy of the ligamentum capitis femoris (LCF) and color illustrations. 

Fig. 235. — Right hip bone. External surface.


Quote p. 237

The Acetabulum (cotyloid cavity). — The acetabulum is a deep, cup-shaped, hemispherical depression, directed downward, lateralward, and forward. It is formed medially by the pubis, above by the ilium, laterally and below by the ischium; a little less than two-fifths is contributed by the ilium, a little more than two-fifths by the ischium, and the remaining fifth by the pubis. It is bounded by a prominent uneven rim, which is thick and strong above, and serves for the attachment of the glenoidal labrum (cotyloid ligament), which contracts its orifice, and deepens the surface for articulation. It presents below a deep notch, the acetabular notch, which is continuous with a circular non-articular depression, the acetabular fossa, at the bottom of the cavity: this depression is perforated by numerous apertures, and lodges a mass of fat. The notch is converted into a foramen by the transverse ligament; through the foramen nutrient vessels and nerves enter the joint; the margins of the notch serve for the attachment of the ligamentum teres. The rest of the acetabulum is formed by a curved articular surface, the lunate surface, for articulation with the head of the femur. 

Fig. 243. — Upper extremity of right femur viewed from behind and above.


Quote p. 243

The Head (caput femoris). — The head which is globular and forms rather more than a hemisphere, is directed upward, medialward, and a little forward, the greater part of its convexity being above and in front. Its surface is smooth, coated with cartilage in the fresh state, except over an ovoid depression, the fovea capitis femoris, which is situated a little below and behind the center of the head, and gives attachment to the ligamentum teres. 

Fig. 244. — Right Femur. Anterior Surface. [fragment]


Quote p. 333 

I. Coxal Articulation or Hip-joint (Articulatio Coxae).

This articulation is an enarthrodial or ball-and-socket joint, formed by the reception of the head of the femur into the cup-shaped cavity of the acetabulum. The articular cartilage on the head of the femur, thicker at the center than at the circumference, covers the entire surface with the exception of the fovea capitis femoris, to which the ligamentum teres is attached; that on the acetabulum forms an incomplete marginal ring, the lunate surface. Within the lunate surface there is a circular depression devoid of cartilage, occupied in the fresh state by a mass of fat, covered by synovial membrane. The ligaments of the joint are:

The Articular Capsule.

The Iliofemoral.

The Ischiocapsular.

The Pubocapsular.

The Ligamentum Teres Femoris.

The Glenoidal Labrum.

The Transverse Acetabular. 

Fig. 339. — Right hip-joint from the front. (Spalteholz.)

 

Fig. 340. — Right hip-joint from behind. (Quain.)


Quote p. 336

The Ligamentum Teres Femoris (Fig. 341), — The ligamentum teres femoris is a triangular, somewhat flattened band implanted by its apex into the antero-superior part of the fovea capitis femoris; its base is attached by two bands, one into either side of the acetabular notch, and between these bony attachments it blends with the transverse ligament. It is ensheathed by the synovial membrane, and varies greatly in strength in different subjects; occasionally only the synovial fold exists, and in rare cases even this is absent. The ligament is made tense when the thigh is semiflexed and the limb then adducted or rotated outward; it is, on the other hand, relaxed when the limb is abducted. It has, however, but little influence as a ligament. 

Fig. 341. — Left hip-joint, opened by removing
the floor of the acetabulum from within the pelvis.

Fig. 342. — Hip-joint, front view. The capsular ligament has been largely removed.

Quote p. 338

Synovial Membrane (Fig. 343). — The synovial membrane is very extensive. Commencing at the margin of the cartilaginous surface of the head of the femur, it covers the portion of the neck which is contained within the joint; from the neck it is reflected on the internal surface of the capsule, covers both surfaces of the glenoidal labrum and the mass of fat contained in the depression at the bottom of the acetabulum, and ensheathes the ligamentum teres as far as the head of the femur. The joint cavity sometimes communicates through a hole in the capsule between the vertical band of the iliofemoral ligament and the pubocapsular ligament with a bursa situated on the deep surfaces of the Psoas major and Iliacus. 

Fig. 343. — Capsule of hip-joint (distended). Posterior aspect.

Fig. 344. — Structures surrounding right hip-joint.

Quote p. 338-339 

Movements. — The movements of the hip are very extensive, and consist of flexion, extension, adduction, abduction, circumduction, and rotation.

The length of the neck of the femur and its inclinations to the body of the bone have the effect of converting the angular movements of flexion, extension, adduction, and abduction partially into rotatory movements in the joint. Thus when the thigh is flexed or extended, the head of the femur, on account of the medial inclination of the neck, rotates within the acetabulum with only a slight amount of gliding to and fro. The forward slope of the neck similarly affects the movements of adduction and abduction. Conversely rotation of the thigh which is permitted by the upward inclination of the neck, is not a simple rotation of the head of the femur in the acetabulum, but is accompanied by a certain amount of gliding.

The hip-joint presents a very striking contrast to the shoulder-joint in the much more complete mechanical arrangements for its security and for the limitation of its movements. In the shoulder, as has been seen, the head of the humerus is not adapted at all in size to the glenoid cavity, and is hardly restrained in any of its ordinary movements by the capsule. In the hip-joint, on the contrary, the head of the femur is closely fitted to the acetabulum for an area extending over nearly half a sphere, and at the margin of the bony cup it is still more closely embraced by the glenoidal labrum, so that the head of the femur is held in its place by that ligament even when the fibers of the capsule have been quite divided. The iliofemoral ligament is the strongest of all the ligaments in the body, and is put oi) the stretch by any attempt to extend the femur beyond a straight line with the trunk. That is to say, this ligament is the chief agent in maintaining the erect position without muscular fatigue; for a vertical Une passing through the center of gravity of the trunk falls behind the centers of rotation in the hip-joints, and therefore the pelvis tends to fall backward, but is prevented by the tension of the iliofemoral ligaments. The security of the joint may be provided for also by the two bones being directly united through the ligamentum teres; but it is doubtful whether this ligament has much influence upon the mechanism of the joint. When the knee is flexed, flexion of the hip-joint is arrested by the soft parts of the thigh and abdomen being brought into contact, and when the knee is extended, by the action of the hamstring muscles; extension is checked by the tension of the iliofemoral ligament; adduction by the thighs coming into contact; adduction with flexion by the lateral band of the iliofemoral ligament and the lateral part of the capsule; abduction by the medial band of the iliofemoral ligament and the pubocapsular ligament ; rotation outward by the lateral band of the iliofemoral ligament; and rotation inward by the ischiocapsular ligament and the hinder part of the capsule. The muscles which flex the femur on the pelvis are the Psoas major, Iliacus, Rectus femoris, Sartorius, Pectineus, Adductores longus and brevis, and the anterior fibers of the Glutaei medius and minimus. Extension is mainly performed by the Glutseus maximus, assisted by the hamstring muscles and the ischial head of the Adductor magnus. The thigh is adducted by the Adductores magnus, longus, and brevis, the Pectineus, the Gracilis, and lower part of the Glutseus maximus, and abducted by the Glutaei medius and minimus, and the upper part of the Glutseus maximus. The muscles which rotate the thigh inward are the Glutseus minimus and the anterior fibers of the Glutajus medius, the Tensor fascise latae and the Iliacus and Psoas major; while those which rotate it outward are the posterior fibers of the Glutseus medius, the Piriformis, Obturatores externus and internus, Gemelli superior and inferior, Quadratus femoris, Glutseus maximus, the Adductores longus, brevis, and magnus, the Pectineus, and the Sartorius.



External links

Gray H. Anatomy, descriptive and surgical; 20th ed. Philadelphia, New York: Lea & Febiger, 1918. [archive.org]

Authors & Affiliations

Henry Gray (1825-1861) was a British anatomist and surgeon. [wikipedia.org] 

Henry Gray
Author: H. Pollock, unknown date;
original in the 
wikimedia.org collection (CC BY 4.0, no changes).

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, functions

                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

MORPHOLOGY AND TOPOGRAPHY

Comments

Popular posts from this blog

Catalog. LCF of Extinct Species

Discussion of the LCF and morphological signs of its existence in extinct species.   Funston, G. F. (2024). Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria). Zoological Journal of the Linnean Society, zlae011. [ academic.oup.com ] Hafed, A. B., Koretsky, I. A., Nance, J. R., Koper, L., & Rahmat, S. J. (2024). New Neogene fossil phocid postcranial material from the Atlantic (USA). Historical Biology, 1-20. [ tandfonline.com ] Kuznetsov, A. N., & Sennikov, A. G. (2000). On the function of a perforated acetabulum in archosaurs and birds. PALEONTOLOGICAL JOURNAL C/C OF PALEONTOLOGICHESKII ZHURNAL, 34(4), 439-448. [ researchgate.net ] Romer, A. S. (1922). The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the AMNH; v. 46, article 10. [ digitallibrary.amnh.org  ,  digitallibrary.amnh.org(PDF) ]    Słowiak, J., Brusatte, S. L., & Szczygielski, T. (2024). Reassessment of the enigmati...

LCF in 2025 (November)

  LCF in 2025 ( November )   (Quotes from articles and books published in  October  2025 mentioning the ligamentum capitis femoris)   Awad, A., Rizk, A., ElAlfy, M., Hamed, M., Abdelghany, A. M., Mosbah, E., ... & Karrouf, G. (2025). Synergistic Effects of Hydroxyapatite Nanoparticles and Platelet Rich Fibrin on Femoral Head Avascular Necrosis Repair in a Rat Model.  Journal of Biomedical Materials Research Part B: Applied Biomaterials ,  113 (11), e35672.    [i]    onlinelibrary.wiley.com   Loughzail, M. R., Aguenaou, O., Fekhaoui, M. R., Mekkaoui, J., Bassir, R. A., Boufettal, M., ... & Lamrani, M. O. (2025). Posterior Fracture–Dislocation of the Femoral Head: A Case Report and Review of the Literature.  Sch J Med Case Rep ,  10 , 2483-2486.     [ii]    saspublishers.com  ,  saspublishers.com   Vertesich, K., Noebauer-Huhmann, I. M., Schreiner, M., Schneider, E., Willegger,...

2025ChenJH_AcklandD

  The article by Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D. Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip (2025). The authors experimentally demonstrated the role of the ligamentum capitis femoris (LCF) in unloading the upper sector of the acetabulum and the femoral head. The text in Russian is available at the following link: 2025ChenJH_AcklandD . Joint contact behavior in the native, ligamentum teres deficient and surgically reconstructed hip: A biomechanics study on the anatomically normal hip By  Chen JH, Al’Khafaji I, Ernstbrunner L, O’Donnell J, Ackland D.     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and methods [iv]   Results [v]   Discussion and Conclusion [vi]   References [vii]   Application [i]   Abstract Background The ligamentum teres is known to contribute to hip joint st...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

1878MarshallJ

  Fragments from the book Marshall J. Anatomy for artists (1878). The author discusses the anatomy and briefly the role of the ligamentum capitis femoris (LCF): «… checks adduction of the thigh, or a sinking down of the pelvis upon the opposite side, and, possibly, also limits the reciprocal, horizontal rotatory movements of the femur and the pelvis on each other» .   Quote p. 65 The head of the femur is almost entirely received into the acetabulum, a deep socket of the hip-bone, thus forming the largest and most complete ball-and- socket joint in the body. At a point on the inner side of the head of the femur, a little below and also behind its centre, is a small rough, bifid , depression, for the attachment of the ligamentum teres of the hip-joint. Opposite this point, the head of the bone is, however, more prominent than elsewhere, and corresponds with a non- articular depressed portion of the acetabulum.   Quote p. 68 The ligamentum teres, which is attached by one en...

1916WalmsleyT

    Article by Walmsley T. A note on the retinacula of Weitbrecht (1916). The author discusses the embryonic development and relationships of the ligamentum capitis femoris (LCF) in humans and animals.     A NOTE ON THE RETINACULA OF WEITBRECHT. By THOMAS WALMSLEY, M.B., Senior Demonstrator in Anatomy, University  of Glasgow.   The synovial membrane of the hip-joint is in extent and attachment similar to that of other diarthroses, but the retinacula of Weitbrecht (or ligaments of Stanley) lend to it a special interest. These retinacula are readily recognized on the interior of the capsule as flattened bands passing inwards towards the margin of the head of the femur from the attachment of the peripheral capsule. The following description of their constitution may be selected as expressive of current opinion. The retinacula are arranged in three groups, superior, middle, and inferior: structurally, they are synovial covered capsular reflections: morphologic...

1956PelletLL

    Invention  ( Patent ) : Pellet LL. Hip arthroplasty with flexible securing means US2765787 (1956) .   US2765787A United States Inventor: Leon L Pellet Current Assignee: Individual Worldwide applications 1954 US Application US447107A events: 1954-08-02 Application filed by Individual 1954-08-02 Priority to US447107A 1956-10-09 Application granted 1956-10-09 Publication of US2765787A 1973-10-09 Anticipated expiration Status: Expired - Lifetime   HIP ARTHROPLASTY WITH FLEXBLE SECURING MEANS Leon L. Pellet, Dallas, Tex. Application August 2, 1954, Serial No. 447,107 19 Claims. (C. 128-92)   This invention relates to a method and means for treating subcapital fractures of the femur. Subcapital fractures of the femur, i. e. fracture of the neck of the femur between the head and the trochanter of the femur, occur frequently in elderly people because the bone structure of the femoral neck becomes porous and weak with age. Further, sometimes, as a result of ase...

1857RichetA

  Fragments of the book Richet A. Traité pratique d' Anatomie medico-chirurgicale (1857) are devoted to the anatomy of the ligamentum capitis femoris (LCF). The author believes that the vessels passing through the LCF are sufficient to supply blood to the femoral head. The text is prepared for machine translation using a service built into the blog from Google or your web browser. In some cases, we have added links to quotations about LCF available on our resource, as well as to publications posted on the Internet.   Quote pp. 922-923 Articulation coxo-femorale. Cette articulation, qui appartient à la classe des énarthroses dont elle représente le type, a été l'objet de travaux importants de la part des physiologistes et des chirurgiens, et c'est aux frères Weber et à M. Malgaigne, plutôt qu'aux anatomistes purs, qu'on doit d'avoir mis en lumière un grand nombre des faits qui vont suivre et qui éclairent des questions pathologiques avant eux restées insol...

2000ShahMK

  Invention  ( Patent ) : Shah MK. Joint replacement system, US6010535 (2000).   US6010535A United States Inventor: Mrugesh K. Shah Current Assignee: Individual Worldwide applications 1998 US Application US09/070,205 events: 1998-04-30 Application filed by Individual 1998-04-30 Priority to US09/070,205 2000-01-04 Application granted 2000-01-04 Publication of US6010535A 2018-04-30 Anticipated expiration Status: Expired - Fee Related   Joint replacement system Mrugesh K. Shah   Abstract A replacement system for a joint including a first cup member having an interior lining material and forming a hemispherical cavity therein, a ball member received within the hemispherical cavity and being cantable within the cavity, a securing member connected to the first cup member for affixing the first cup member within an acetabulum area of the pelvic bone of a human joint, and an affixing member interconnected to the ball member for affixing the ball member against the ...

1865RoseE

The author describes his own experiments on the hip joint and mentions the ligamentum capitis femoris (LCF). Edmund Rose noted that the LCF allowed the femoral head to be removed from the acetabulum more than 1½ inches (38.1 mm). The text is prepared for machine translation using a service built into the blog from Google or your web browser. In some cases, we have added links to quotations about LCF available on our resource, as well as to publications posted on the Internet.   Die Mechanik des Hüftgelenkes. Von Dr. EDMUND ROSE, Docent der Chirurgie in Berlin. Quote p. 528-530 Ich fuhr danach fort, die Weber'schen Experimente zwar nicht wörtlich nachzumachen, aber zur Controlle zu variiren, indem ich zunächst den Pfannenboden dicht oberhalb des untern Horns und neben dem Lig. teres von der Pfanne aus durchbohrte, um so die Kugel nicht zu verletzen, was bei umgekehrkehrter Richtung, da sich Pfanne und Kugel berühren, den Mechanikern unvermeidlich scheint (1), wonach dann freilich ...