Skip to main content

1918GrayH


Fragments from the book Gray H. Anatomy, descriptive and surgical (1918; 20th ed.). The selected passages on the anatomy of the ligamentum capitis femoris (LCF) and color illustrations. 

Fig. 235. — Right hip bone. External surface.


Quote p. 237

The Acetabulum (cotyloid cavity). — The acetabulum is a deep, cup-shaped, hemispherical depression, directed downward, lateralward, and forward. It is formed medially by the pubis, above by the ilium, laterally and below by the ischium; a little less than two-fifths is contributed by the ilium, a little more than two-fifths by the ischium, and the remaining fifth by the pubis. It is bounded by a prominent uneven rim, which is thick and strong above, and serves for the attachment of the glenoidal labrum (cotyloid ligament), which contracts its orifice, and deepens the surface for articulation. It presents below a deep notch, the acetabular notch, which is continuous with a circular non-articular depression, the acetabular fossa, at the bottom of the cavity: this depression is perforated by numerous apertures, and lodges a mass of fat. The notch is converted into a foramen by the transverse ligament; through the foramen nutrient vessels and nerves enter the joint; the margins of the notch serve for the attachment of the ligamentum teres. The rest of the acetabulum is formed by a curved articular surface, the lunate surface, for articulation with the head of the femur. 

Fig. 243. — Upper extremity of right femur viewed from behind and above.


Quote p. 243

The Head (caput femoris). — The head which is globular and forms rather more than a hemisphere, is directed upward, medialward, and a little forward, the greater part of its convexity being above and in front. Its surface is smooth, coated with cartilage in the fresh state, except over an ovoid depression, the fovea capitis femoris, which is situated a little below and behind the center of the head, and gives attachment to the ligamentum teres. 

Fig. 244. — Right Femur. Anterior Surface. [fragment]


Quote p. 333 

I. Coxal Articulation or Hip-joint (Articulatio Coxae).

This articulation is an enarthrodial or ball-and-socket joint, formed by the reception of the head of the femur into the cup-shaped cavity of the acetabulum. The articular cartilage on the head of the femur, thicker at the center than at the circumference, covers the entire surface with the exception of the fovea capitis femoris, to which the ligamentum teres is attached; that on the acetabulum forms an incomplete marginal ring, the lunate surface. Within the lunate surface there is a circular depression devoid of cartilage, occupied in the fresh state by a mass of fat, covered by synovial membrane. The ligaments of the joint are:

The Articular Capsule.

The Iliofemoral.

The Ischiocapsular.

The Pubocapsular.

The Ligamentum Teres Femoris.

The Glenoidal Labrum.

The Transverse Acetabular. 

Fig. 339. — Right hip-joint from the front. (Spalteholz.)

 

Fig. 340. — Right hip-joint from behind. (Quain.)


Quote p. 336

The Ligamentum Teres Femoris (Fig. 341), — The ligamentum teres femoris is a triangular, somewhat flattened band implanted by its apex into the antero-superior part of the fovea capitis femoris; its base is attached by two bands, one into either side of the acetabular notch, and between these bony attachments it blends with the transverse ligament. It is ensheathed by the synovial membrane, and varies greatly in strength in different subjects; occasionally only the synovial fold exists, and in rare cases even this is absent. The ligament is made tense when the thigh is semiflexed and the limb then adducted or rotated outward; it is, on the other hand, relaxed when the limb is abducted. It has, however, but little influence as a ligament. 

Fig. 341. — Left hip-joint, opened by removing
the floor of the acetabulum from within the pelvis.

Fig. 342. — Hip-joint, front view. The capsular ligament has been largely removed.

Quote p. 338

Synovial Membrane (Fig. 343). — The synovial membrane is very extensive. Commencing at the margin of the cartilaginous surface of the head of the femur, it covers the portion of the neck which is contained within the joint; from the neck it is reflected on the internal surface of the capsule, covers both surfaces of the glenoidal labrum and the mass of fat contained in the depression at the bottom of the acetabulum, and ensheathes the ligamentum teres as far as the head of the femur. The joint cavity sometimes communicates through a hole in the capsule between the vertical band of the iliofemoral ligament and the pubocapsular ligament with a bursa situated on the deep surfaces of the Psoas major and Iliacus. 

Fig. 343. — Capsule of hip-joint (distended). Posterior aspect.

Fig. 344. — Structures surrounding right hip-joint.

Quote p. 338-339 

Movements. — The movements of the hip are very extensive, and consist of flexion, extension, adduction, abduction, circumduction, and rotation.

The length of the neck of the femur and its inclinations to the body of the bone have the effect of converting the angular movements of flexion, extension, adduction, and abduction partially into rotatory movements in the joint. Thus when the thigh is flexed or extended, the head of the femur, on account of the medial inclination of the neck, rotates within the acetabulum with only a slight amount of gliding to and fro. The forward slope of the neck similarly affects the movements of adduction and abduction. Conversely rotation of the thigh which is permitted by the upward inclination of the neck, is not a simple rotation of the head of the femur in the acetabulum, but is accompanied by a certain amount of gliding.

The hip-joint presents a very striking contrast to the shoulder-joint in the much more complete mechanical arrangements for its security and for the limitation of its movements. In the shoulder, as has been seen, the head of the humerus is not adapted at all in size to the glenoid cavity, and is hardly restrained in any of its ordinary movements by the capsule. In the hip-joint, on the contrary, the head of the femur is closely fitted to the acetabulum for an area extending over nearly half a sphere, and at the margin of the bony cup it is still more closely embraced by the glenoidal labrum, so that the head of the femur is held in its place by that ligament even when the fibers of the capsule have been quite divided. The iliofemoral ligament is the strongest of all the ligaments in the body, and is put oi) the stretch by any attempt to extend the femur beyond a straight line with the trunk. That is to say, this ligament is the chief agent in maintaining the erect position without muscular fatigue; for a vertical Une passing through the center of gravity of the trunk falls behind the centers of rotation in the hip-joints, and therefore the pelvis tends to fall backward, but is prevented by the tension of the iliofemoral ligaments. The security of the joint may be provided for also by the two bones being directly united through the ligamentum teres; but it is doubtful whether this ligament has much influence upon the mechanism of the joint. When the knee is flexed, flexion of the hip-joint is arrested by the soft parts of the thigh and abdomen being brought into contact, and when the knee is extended, by the action of the hamstring muscles; extension is checked by the tension of the iliofemoral ligament; adduction by the thighs coming into contact; adduction with flexion by the lateral band of the iliofemoral ligament and the lateral part of the capsule; abduction by the medial band of the iliofemoral ligament and the pubocapsular ligament ; rotation outward by the lateral band of the iliofemoral ligament; and rotation inward by the ischiocapsular ligament and the hinder part of the capsule. The muscles which flex the femur on the pelvis are the Psoas major, Iliacus, Rectus femoris, Sartorius, Pectineus, Adductores longus and brevis, and the anterior fibers of the Glutaei medius and minimus. Extension is mainly performed by the Glutseus maximus, assisted by the hamstring muscles and the ischial head of the Adductor magnus. The thigh is adducted by the Adductores magnus, longus, and brevis, the Pectineus, the Gracilis, and lower part of the Glutseus maximus, and abducted by the Glutaei medius and minimus, and the upper part of the Glutseus maximus. The muscles which rotate the thigh inward are the Glutseus minimus and the anterior fibers of the Glutajus medius, the Tensor fascise latae and the Iliacus and Psoas major; while those which rotate it outward are the posterior fibers of the Glutseus medius, the Piriformis, Obturatores externus and internus, Gemelli superior and inferior, Quadratus femoris, Glutseus maximus, the Adductores longus, brevis, and magnus, the Pectineus, and the Sartorius.



External links

Gray H. Anatomy, descriptive and surgical; 20th ed. Philadelphia, New York: Lea & Febiger, 1918. [archive.org]

Authors & Affiliations

Henry Gray (1825-1861) was a British anatomist and surgeon. [wikipedia.org] 

Henry Gray
Author: H. Pollock, unknown date;
original in the 
wikimedia.org collection (CC BY 4.0, no changes).

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, functions

                                                                     

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

MORPHOLOGY AND TOPOGRAPHY

Comments

Popular posts from this blog

2025ArkhipovSV. Human Children

  The monograph  Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. [In Russian].  The monograph dates the writing of the Book of Genesis and the events depicted in it, as well as refutes the authorship of Moses. I offer mutually beneficial cooperation (50/50) in literary translation into English or native language. Proofreading of machine translation and cooperation in editing are expected.  Requirements for co-author: 1. Native speaker 2. Experience as a writer. E-mail: archipovsv(&)gmail.com Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition...

ILIOTIBIAL TRACT & LCF

  ILIOTIBIAL TRACT & LCF There is an opinion that the iliotibial tract, like the ligamentum capitis femoris (LCF), provides pressing of the acetabulum to the lower surface of the femoral head. I think that this is not true. The tract is located above and lateral to the center of rotation of the hip joint. Its force vector, like the force vector of the abductor group of muscles, presses the acetabulum to the upper part of the femoral head, which increases the load on it. The ligamentum capitis femoris acts in the opposite direction. Below is a diagram for a single-support position. #ligamentum_teres   #hip   #biomechanics   #ligamentum_capitis_femoris Publication in the facebook group 04/12/2025.                                                                              ...

1836WeberW_WeberE

  We present fragments from the book that laid the foundation of biomechanics of the hip joint considering the ligamentum capitis femoris (LCF). The authors experimentally proved that this structure is situated in the frontal plane when the body is in a vertical position. Analysis of observations showed that when standing on one leg, the LCF and the anterior portion of the iliofemoral ligament (pars descendens lig. iliofemoralis) are stretched and hold the pelvis. These ligaments counteract the weight of the body along with the head of the femur on the same side. The insight of the Weber brothers was later developed in the works of H. von Meyer (1856) , W. Turner (1857) , and W. Savory(1874) . Weber W, Weber E. Mechanik der menschlichen Gehwerkzeuge: eine anatomisch-physiologische Untersuchung. Gottingen: Dietrichsche Buchhandlung, 1836. [fragment s ] Quote p. 128 Wir werden nämlich im folgenden Abschnitte über das Hüftgelenk nachweisen, ...

1922LeeserI

  A fragment of the Book of Genesis tells about the journey of the family of Patriarch Jacob from Charan to Canaan (Gen. 31:1 – 33:20). The translation into English from of the Masoretic Hebrew text of the Torah was done by Isaac Leeser ( 1922 LeeserI ). «Most scholars agree that the texts now found in Genesis began to be written down sometime after the establishment of the monarchy in Israel in the tenth century BCE» (1992SuggsMJ_MuellerJR). A selected passage from an ancient work mentions for the first time in history the injury of the ligamentum capitis femoris (LCF) of a person is mentioned (Gen. 32:26,33). In the original Hebrew source this anatomical element is referred to as «גיד» (gheed, gid)  ( Bereshit 32:33 ;  1923, 2004PreussJ;  2019ArkhipovSV_SkvortsovDV ;  2020ArkhipovSV_ProlyginaIV ).  This term was recorded in writing long before Hippocrates of Kos (V-IV cent. BCE) who used the concept «νεῦρον» to designate LCF (1844LittréÉ). It is not known...

2025ArkhipovSV. Why Acetabular Labrum Repair May Be Ineffective

  Original in Russian is available at the link:   С.В. Архипова «Почему восстановление вертлужной губы может быть неэффективно?» (06.04.2025) , below is a machine translation edited by a non-native speaker (version dated 06/04/2025). Thematic Internet Journal About round ligament of femur April 2025 WHY ACETABULAR LABRUM REPAIR MAY BE INEFFECTIVE?: A NOTE ON THE MYSTERIOUS "DARK MATTER" OF THE HIP JOINT S.V. Arkhipov, Independent Researcher, Joensuu, Finland Abstract Acetabular labrum repair and reconstruction do not prevent hip joint instability during gait and the development of osteoarthritis in the case of an elongated ligamentum capitis femoris. This conclusion is based on mathematical calculations and analysis of experiments conducted on a mechanical hip joint model. Keywords : arthroscopy, hip joint, acetabular labrum, ligamentum capitis femoris, ligamentum teres, ligament of head of femur , reconstruction, repair Introduction Nearly 80% of primary hip ar...

ChatGPT. Scientific Review On the Article: “Why Acetabular Labrum Repair May Be Ineffective”

  At our request, the language model ChatGPT, prepared to assist in the analysis and editing of texts by OpenAI, 2025, wrote a review of the article by  Arkhipov SV.   Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint   ([Ru]  Архипов СВ .  Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе.  06.04.2025 ).  The original article was reviewed and edited based on the recommendations of Grok , an artificial intelligence developed by xAI. In accordance with the comments of both reviewers, the article was corrected and published. Below is the original text of the review by ChatGPT: Scientific Review and Critical Commentary On the article: “Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint” Author: S.V. Arkhipov, Independent Researcher, Joensuu, Finland I. Scientific...

LCF Mechanics

  Ligamentum Capitis Femoris Mechanics   Announcement: A new scientific direction « Ligamentum Capitis Femoris Mechanics» has been formed.   Definition: A section of physiology that develops issues of applying the doctrine of the ligamentum capitis femoris (LCF), its movements and forces to solving medical and biological problems.   Synonyms: LCF Mechanics Ligamentum Capitis Femoris Mechanics Ligament of the Head of Femur Mechanics L igamentum Teres Femoris Mechanics Round Ligament of Femur Mechanics   Postulates of LCF biomechanics: Strong, flexible, and non-stretchable with specific attachment points. Limits adduction, rotation, and cranial displacement of the femur. Shunts load on the femoral head and the abductor muscle group of the hip joint. Ensures rhythmicity, symmetry, and energy efficiency of walking.   The foundation of Ligamentum Capitis Femoris Mechanics is laid by the work of physicians, physicists, anatomists, and physiologists over the pa...

2013ClaytonM PhiloR

  Fragment from the book Clayton M, Philo R. Leonardo da Vinci: The mechanics of man (2013). The authors describe a drawing by Leonardo da Vinci depicting the insertion site of the ligamentum capitis femoris (LCF). The drawing was created in the winter of 1510-1511 in Milan while studying the anatomy of the human body ( 1510Leonardo_da Vinci ). Quote p. 90 The slightly enlarged upper head of the fibula and the blunted appearance of the styloid processes at the end of the tibia and fibula may have resulted from using freshly prepared bones, with portions of ligaments and cartilage remaining, rather than dried bones. A small piece of ligament seems to be visible on the head of the femur in the drawings below, at upper right and at upper center, and the patella drawn in isolation at upper left appears to have some of the patellar ligament remaining on its lower edge. Fragments :   Leonardo da Vinci.  The bones and muscles of the leg (c.1510-11) (© Royal Collection Enterprise...

Set of Classifications

  General Classification of LCF Pathology Version : 20240420 Annotation Analysis of literature data and our own morphological observations allowed us to propose a General Classification of LCF Pathology. Introduction In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. L.I. Gaevskaya distinguished three types of LCF: 1) long and thick (length 41–51 mm, thickness 5 mm), 2) short and thin (length 10–20 mm, thickness 1 mm), 3) long and of small thickness (length 43–45 mm, with a thickness of 3 mm, and length 28–30 mm with a thickness of 4–5 mm) (1954 ГаевскаяЛИ ). V.V. Kovanov, A.A. Travin identified three varieties of histological structure of LCF: 1) with a predominance of loose connective tissue; 2) with a predominance of dense connective tissue; 3) with a uniform distribution of loose and dense connective tissue ( 1963 КовановВВ _ ТравинАА ). The development of arthroscopic surgery has made it possible to i...

922-722bcElohist

  Excerpt from the book of Bereishit (Genesis), the lost biblical source Elohist, written in Paleo-Hebrew script. A variant of the oldest description of damage to the ligamentum capitis femoris (LCF) and the cause of lameness in Hebrew, dating from 922-722 BCE. See our commentary at the link: 922-722bcElohist [Rus]. Quote [ Paleo-Hebrew ] Elohist. Bereshit 32:32-33 (original source: 5784 Moshe Ben Amram, p. 41;  our correction) Translation [Eng] Elohist. Bereshit 32:32-33 and the sun riseth on him when he hath passed over Penuel, and he is halting on his thigh; therefore the sons of Israel do not eat the sinew which shrank, which is on the hollow of the thigh, unto this day, because He came against the hollow of Jacob's thigh, against the sinew which shrank.  (our correction-reconstruction of the version 1898 YoungR ( p. 23, Bereishit 32:32-33); preserved the text of the age of 922-722 BC belonging to the lost biblical source "Elohist") Moshe Ben Amram. Pentateuch in P...