Skip to main content

1844CruveilhierJ


Fragments from the book Cruveilhier J. The Anatomy of the Human Body (1844). The author discusses the anatomy and role of the ligamentum capitis femoris (LCF).


Quote p. 94

The head (i, figs. 49 and 50) is the most regularly spheroidal of all the eminences in the skeleton, and forms nearly two thirds of a sphere. In the middle of it we observe a rough depression (k) of variable dimensions, which gives attachment to the round ligament.

Quote pp. 159-162

COXO-FEMORAL ARTICULATION (fig. 76).

Preparation. Remove with care all the muscles that surround the joint, preserving the reflected tendon of the rectus femoris. The psoas and iliacus muscles, the synovial capsule of which so often communicates with the articular synovial membrane, must be removed with particular care. After the fibrous capsule has been studied upon its external surface, a circular division should be made round its middle portion, for the purpose of uncovering the deep-situated parts. This articulation is the type of the order enarthrosis, being a true ball and socket joint.

The articular surfaces are the globular head of the femur, and the cotyloid cavity of the os innominatum. There is a striking difference between this joint and that of the shoulder, as far as regards the size of the articular head and the depth of the articular cavity. While the head of the humerus and the glenoid cavity are simply in juxtaposition without any reception of the former into the latter, so that the scapulo-humeral articulation has for a long time been, and is now considered as an arthrodia, there is a deep and complete fitting of the head of the femur into the cotyloid cavity, which we have pronounced to be the deepest articular cavity of the body. Both of the surfaces above named are covered with cartilage, with the exception of two depressions, one of which is situated on the head of the femur, the other at the bottom of the cotyloid cavity: the latter is filled with a reddish adipose tissue, improperly called the cotyloid gland. It is analogous to the adipose tissue found in the neighbourhood of all the joints; its use is not well known. I have often asked myself the question. Why should there be this posterior cotyloid cavity? On submitting the joint to an antero-posterior vertical section, slightly encroaching on the margin of the posterior cotyloid cavity, it will be seen that the object of this cavity is to protect the round ligament in all the possible positions of the head of the femur; and that, without this cavity, the round ligament could not have existed without its being compressed between the articular surfaces. Now, as the intraarticular vessels enter this cavity, and go to the head of the femur along the round ligament, it is not impossible but that the exclusive use of this posterior cotyloid cavity should be to protect the vessels destined to the head of the femur, and that the round ligament itself should have no other use than to support these vessels, and to transmit them to the head of the femur. The cotyloid adipose tissue does not seem to have any other object, except to fill the empty space of this posterior cavity.

It appears to me that the round ligament of the coxo-femoral articulation of the posterior cotyloid cavity serves the same purpose as the space between the condyles of the lower end of the femur and the crucial ligaments of the knee-joint.

Means of Union. The cotyloid ligament (n, fig. 76). This band, improperly called cotyloid ligament, is attached to the margin of the acetabulum, which it, as it were, completes; it augments the depth of the cavity, and renders smooth its sinuous and notched circumference. It is of greater size at the notches than in any other part: by its means the irregularities of the edge of the acetabulum are effaced, and the deep notch in front and below is converted into a foramen for the passage of vessels to the fatty tissue, the inter-articular ligament, and the head of the femur.

The cotyloid band is much thicker above and behind than below and in front, and it is precisely against the first two points that the head of the femur constantly presses. It is also remarkable, in this respect, that the diameter of its free borders is smaller than that by which it is attached; and this circumstance assists, in some degree, in retaining the head of the femur in the cotyloid cavity.* It consists of fibres which arise successively from all points of the circumference of the acetabulum, and interlace at very acute angles. This interlacement is especially visible in the situation of the great anterior notch, where the fibres may be seen arising from each side of the notch, and passing across each other. 

*I have never seen this disposition better exhibited than in a subject in which the cotyloid band was ossified in its whole extent, except at the place on a level with the anterior and inferior notch. The head of the femur was mechanically and solidly retained in the acetabulum, whose bottom, being partly worn out and pressed inward, formed a prominence in the interior face of the pelvis. 

The orbicular ligament, or fibrous capsule (p, fig. 76). This represents a fibrous sac, having two openings, by one of which it embraces the acetabulum, outside the cotyloid ligament, while the other surrounds the neck of the femur. The femoral insertion of the capsular ligament requires to be carefully studied, for the purpose of explaining the difference between fractures within, and fractures beyond, the capsule. This insertion is so arranged, that at the upper part and in front of the joint it corresponds with the base of the neck of the femur, while beneath and behind it is situated at the junction of the external with the two internal thirds of the neck. The insertion of the capsule in front takes place not only at the base of the neck of the femur, but also internally to this base, to the extent of several lines, as may be ascertained by an incision being made along this insertion in the direction of the axis of the neck. The length of the orbicular ligament is exactly equal to the distance between its insertions, excepting at the inner part, where it is much more loose. Hence the extent of the motion of abduction, which is so remarkable in some jugglers, that they are able to separate their legs until they form right angles with the body, without producing dislocation.

The thickness of this ligament is not equal throughout: it is greatest above and on the outside, where the reflected tendon of the rectus muscle is situated; it is yet very considerable in front and above; it is less thick behind, and still thinner on the inside. In some subjects the thickness of the superior part of the capsule is to that of the inferior as five to one. In front, the capsule is strengthened by a bundle of fibres stretched obliquely, like a sling, from the anterior inferior spinous process of the ilium to the inside of the base of the neck of the femur. It is called by Bertin the anterior and superior ligament (r, fig. 76). This band, which serves as a re-enforcement to the capsule, lies under that portion of the iliacus muscle which arises from the anterior spinous process of the ilium, and follows the direction of this muscle; it is composed of parallel fibres, and closely adheres to the capsule, without adhering in the least to the muscle. Within this bundle the capsule is often imperfect, and permits a communication between the synovial membrane of the joint and the bursa of the psoas and iliacus muscles. This last synovial membrane may be considered as a prolongation of the articular synovial membrane; this prolongation is analogous to the one which we have described at the scapulo-humeral articulation for the subscapularis muscle. In one subject that I dissected, the communicating orifice was so large, that the common tendon of these muscles was in immediate contact with a considerable portion of the head of the femur; the tendon itself being split into several bands, some of which had been lacerated, and, as it were, worn away by friction.

The external surface of the capsular ligament is in relation with the psoas and iliacus muscles in front, being separated from them by a bursa at the upper part, in those cases where the fibrous capsule is not interrupted, and giving insertion to many of their fibres below. On the inside, it is in relation with the obturator externus and the pectineus; on the outside, with the gluteus minimus; behind, with the quadratus femoris, the gemelli, the pyriformis, and the obturator internus. Several of these muscles send fortifying bundles of fibres to the capsule. I may point out an aponeurotic expansion coming from the gluteus minimus, which establishes a close connexion between this muscle and the capsule; a second expansion, furnished by the pyriformis and the gemelli; and a third, which is furnished to the capsule by the tendon of the vastus externus. The internal surface is lined by the synovial membrane.

The orbicular ligament of the hip-joint differs from the generality of such structures in being of a dull white instead of a pearly white colour, and in being composed of irregularly interlaced fibres, except the superficial fibres, which are disposed in parallel lines. I have also observed a very remarkable fact, apparently overlooked by anatomists, viz., that it is extremely thin at its inferior orifice, but especially behind; and that near this insertion it is strengthened by some circular fibres which embrace the neck of the bone like a collar, but without adhering to it; and that in its different movements this sort of collar rolls round the neck, but is retained in its place by small bundles of fibres, reflected from the capsule upon the neck of the bone, which raise the synovial membrane from the surface.

The inter-articular, which is improperly called round ligament (t, fig. 76). This ligament arises, under the form of a fibrous band, folded backward upon itself, from the depression on the head of the femur, which depression is not entirely filled by it. It is twisted around this head, and is divided into three bands, one of which, after having again been subdivided, traverses the adipose tissue and is fixed into the bottom of the cotyloid cavity, while the two others are attached to the two edges of the cotyloid notch, below the cotyloid band, by which this insertion, with which it is often continuous, is concealed.

In one case a prolongation of this ligament traversed the cotyloid notch, and was attached to the part nearest the capsule. The thickness and the strength of this inter-articular ligament are extremely variable: sometimes it is extremely strong, sometimes very weak; sometimes it adheres to one edge only of the notch; sometimes it consists merely of a few ligamentous fibres, contained within the substance of the reflected synovial membrane; sometimes in its place is found a fold of that membrane, which may be torn by the slightest force; and, lastly, it is not uncommon to find that it is altogether wanting. The synovial membrane lines the whole internal surface of the capsular ligament, the two non-adhering surfaces of the cotyloid ligament, and that part of the neck of the femur contained within the joint; it embraces the round ligament, and sends off a prolongation from it to a quantity of fatty matter at the bottom of the acetabulum;* an arrangement which led the older anatomists to believe that the round ligament was inserted into the bottom of the cotyloid cavity. 

*The synovial membrane is often seen, being interposed and descending between the adipose substance and the posterior cotyloid cavity. I may also point out semilunar folds, which are often formed by the synovial membrane round the neck of the femur. These folds are supported by some detached fibres of the capsule, so that the neck, on a level with those fibres, is lined with synovial membrane only in the neighbourhood of the head of the femur. The synovial folds appear to me destined to conduct vessels to the margin of the head of the femur. Round the head of the femur, at its point of union with the neck, are constantly found very small adipose bundles. 

Mechanism of the Coxo-femoral Articulation.

Like all enarthroses, the coxo-femoral articulation can execute movements of flexion, extension, abduction, adduction, circumduction, and rotation.

1. In flexion, the head of the femur rolls in the cotyloid cavity around an imaginary axis corresponding with that of the neck of the bone, while the lower end of the femur is carried from behind forward, and describes the segment of a circle, whose radius is represented by the shaft of the bone. In the mechanism of this movement, the neck of the femur has the effect of substituting a rotatory motion of the head of that bone upon a fixed point, without changing the relation of the head with the acetabulum, and, consequently, without any tendency to displacement, for a very extensive movement backward and forward, which would otherwise have been necessary, and in which the surfaces would have been liable to separation from each other. We can, indeed, scarcely believe that luxation would be possible during this motion, although it can be carried so far that the front of the thigh and the fore part of the abdomen may be brought in contact. 2. Extension is effected by the same mechanism, the head and the neck of the femur rolling upon themselves from behind forward, while large arcs of a circle, from before backward, are described by the body of the bone; but such is the obliquity of the acetabulum, which looks both forward, outward, and downward, that when the femur is in the vertical direction, the head projects and carries forward the fibrous capsule. The anterior re-enforcing bundle is stretched. The psoas and iliacus muscles perform the office of an active ligament. Luxations of the femur forward are not common, for the movement of extension is limited by the meeting of the edge of the acetabulum and the back part of the neck of the femur; and the ligament and muscles above named also tend to counteract it. 3 and 4. The mechanism of adduction and abduction is altogether different from that of the preceding movements, where the articulation forms the centre of a circle described by the femur, the radius of which is measured by a line stretched from the head of the bone to the space between the condyles. In abduction, the head of the femur presses against the inner part of the capsular ligament; and, on account of the looseness of this ligament, the obliquity of the acetabulum, and the arrangement of the inter-articular ligament, this movement may be carried very far without displacement, and is only limited by the meeting of the upper edge of the neck of the femur with the rim of the cotyloid cavity. But this very meeting may itself become the cause of luxation, and then the edge of the cotyloid cavity may be regarded as the fulcrum of a lever of the first order with unequal arms, the whole length of the femur being the arm, to which the power is applied, and the neck of the bone, that by which the resistance acts.

In adduction, the femur moves in precisely the opposite direction: this motion is limited by the mutual contact of the two thighs, but, by means of slight flexion, it may be carried so far as to throw one over the other. The great depth of the upper and external part of the cotyloid cavity, and the strength of the capsular ligament in the same directions, would seem to oppose all displacement. But it should be observed, that falls upon the knees almost always happen during adduction of the thighs, for this is an instinctive movement of preservation. However slight the adduction may be, the interarticular ligament is of necessity stretched; and from this it follows, as my colleague, M. Gerdy, has ingeniously remarked, that the head of the femur is detached from the bottom of the cavity by a kind of rolling of the round ligament upon it, and comes to press against the fibrous capsule. The rupture of the inter-articular ligament is not always necessary in luxation. I have seen several instances of a so-called incomplete luxation inward, without this ligament being torn.

5. Circumduction consists in the transition from one of these motions to another. The femur circumscribes a cone, of which the apex is in the joint, while the base is described by the lower end of that bone. The axis of the cone is represented by a line drawn from the head of the femur to the interval between the condyles; and the length of the femur accounts for movements which are scarcely felt at the coxo-femoral articulation, being so considerable at the lower end of the bone.

6. Independently of the movements above described, the coxo-femoral articulation performs motions of rotation, arising by no means from its enarthrodial shape, but from the presence of the neck of the femur. Generally no movement appears to require a greater expenditure of power on the part of nature than the rotatory movements, and these movements are not always regulated by the same mechanism. We have already seen an example of this movement in the atlo-axoidian articulation, where a cylinder formed by the odontoid process rolls in the partly osseous and partly fibrous ring of the atlas, as an axletree in a wheel. Here the arrangement is quite different; the rotatory movement is obtained simply by the lever being bent like an elbow in such a manner as to make the rotatory movements of the femur upon its axis result from the movements forward or backward of the bent portion. This movement should be studied both at the upper and at the lower part of the femur. At the upper part it is a motion of horizontal displacement, the radius being represented by the head and neck of the bone; at the lower part it is a rotatory motion of the femur, not precisely upon itself, but upon an imaginary axis placed on the inside of, and parallel to, the shaft. It follows that there can be no rotation in cases of fracture of the neck of the bone, and this is one of the diagnostic signs of that accident. Lastly, it may be observed that rotation is performed from without inward, or from within outward the latter is the more extensive and more natural movement; it is produced by a great number of muscles, and, therefore, during repose, the point of the foot is slightly inclined outward.  



External links

Cruveilhier J. The Anatomy of the Human Body. New York: Harper & Brothers, 1844. [books.google , archive.org]

Authors & Affiliations

Jean Cruveilhier (1791-1874) was a French anatomist and pathologist, was a professor of anatomy in Paris, and the first chair of pathology in the Paris Faculty. [wikipedia.org]

Jean Cruveilhier (1837)
 
Author: François-Séraphin Delpech;
 original in the wikimedia.org collection
(CC0 – Public Domain, no changes).


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, role, vascularization

                                                                     .

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7

MORPHOLOGY AND TOPOGRAPHY

Comments

Popular posts from this blog

1836-1840PartridgeR

  «Prof. Partridge in his lectures on anatomy at King's College was accustomed to compare the Ligamentum Teres, in its function, to the leathern straps by which the body of a carriage is suspended on springs » ( 1874SavoryWS ). Perhaps Nikolai Pirogov listened to these lectures ( 1859PirogoffN ).   The analogy that Richard Partridge used could have arisen after reading the monograph Bell J. The Principles of Surgery (1801) . In it, the author depicted a cart and a pelvis resting on the head of one and two femurs. However, there is no mention of ligamentum capitis femoris (LCF) in the chart descriptions. References Savory WS. On the use of the ligamentum teres of the hip joint. J Anat Physiol. 1874;8(2)291-6.    [ ncbi.nlm.nih.gov  ,    archive.org ] Pirogoff N. Anatome topographica sectionibus per corpus humanum congelatum triplici directione ductus illustrate. Petropoli: Typis Jacobi Trey, 1859.   [ books.google  ,   archive.org ] ...

LCF in 2025 (March)

  LCF in 2025 ( March ):  Quotes from articles and books published in March 2025 mentioning the ligamentum capitis femoris.   Matsushita, Y., Sugiyama, H., Hayama, T., Sato, R., & Saito, M. (2025). Long-term Outcome of Pediatric Arthroscopic Surgery for Avulsion Fracture of the Ligamentum Teres: A Case Report. JBJS Case Connector ,  15 (1), e25.   [i]     journals.lww.com   Arkhipov, S. V. (2025). Inferior Portal for Hip Arthroscopy: A Pilot Experimental Study. Pt. 2. Inferior Portal Prototypes.  About Round Ligament of Femur . February 26, 2025.  [ii]   researchgate . net   Pfirrmann, C. W., & Kim, Y. J. (2025). Advanced Imaging. In  Surgical Hip Dislocation: A Comprehensive Approach to Modern Hip Surgery (pp. 29-42). Cham: Springer Nature Switzerland.  [iii]    link.springer.com   Singh, R., & Yadav, N. (2025). Morphometry and Morphology of the Fovea Capitis of the Femoral Head an...

2000-1600bcBM29663

  Fragment of the text of clay tablet BM 29663 (Mesopotamia, 2000-1600 BC). In the list of body parts of a sheep, the author indicates ligamentum capitis femoris (LCF). See our commentary at the link: 2000-1600bcBM29663 [Rus]. Quote [Akk] Clay tablet BM 29663 (original source: photo - British Museum  britishmuseum.org , text - 2018CohenY , p. 134). Translation [Eng] List of Sheep Body Parts ( с lay tablet BM 29663, obverse) 10. ni-im-šu → nimšu, “sciatic nerve”, “sinew” . ( original source: 2018CohenY , p. 135). ( original source: British Museum  britishmuseum.org ,  CC BY-NC-SA 4.0)  External links Clay tablet; museum number 29663; registration number 1898,1115.49. Middle East, Old Babylonian period (2000-1600 BC). [ britishmuseum.org  ,  cdli.mpiwg-berlin.mpg.de ] Sigrist M, Zadok R, Walker C. Catalogue of the Babylonian tablets in the British Museum. Catalogue of the Babylonian tablets in the British Museum. London: British Museum Press, 2006. ...

2025ArkhipovSV. Human Children

  The monograph  Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. [In Russian].  The monograph dates the writing of the Book of Genesis and the events depicted in it, as well as refutes the authorship of Moses. I offer mutually beneficial cooperation (50/50) in literary translation into English or native language. Proofreading of machine translation and cooperation in editing are expected.  Requirements for co-author: 1. Native speaker 2. Experience as a writer. E-mail: archipovsv(&)gmail.com Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition...

A FORCE THAT HELPS ROTATE THE PELVIS

   A force that helps rotate the pelvis when walking. Modeling the key movement of the ligamentum capitis femoris when walking (the simplest but most visual experiments). See: https://kruglayasvyazka.blogspot.com/2024/05/blog-post_29.html #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/24/2025.                                                                                                                     BLOG CONTENT NEWS AND ANNOUNCEMENTS FACEBOOK

2020ArkhipovSV_ProlyginaIV

  Ancient Textual Sources on Ligamentum Teres: Context and Transmission S.V. Arkhipov, I.V. Prolygina   KEYWORDS: ancient medicine; ancient traumatology; Galen; Hippocrates; hip joint; ligamentum capitis femoris; ligament of head of femur; ligamentum teres. SUMMARY Background. One of the least researched anatomical structures of the human body is the ligament of head of femur, most often referred to as ligamentum teres. The history of the nomination of this term, medical contexts of its use, the etymology and the first synonyms (Figure 1) are not sufficiently understood. Purpose. The purpose of the article is to present the most complete collection of evidence from ancient medical authors about the term ligamentum teres, trace the history of its nomination and analyze the gradual changes in the level of knowledge about the anatomy, mechanical and geometric properties of this structure, its pathology and treatment methods. Methods. The study is based on an inter...

EXTERNAL LIGAMENTS & LCF

  external ligaments & LCF First experiments to study the interaction of the external ligaments and the ligamentum capitis femoris in a model: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_6.html Pathological consequences of lengthening of the ligamentum capitis femoris: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_63.html   norm: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_50.html   #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/27/2025.                                                                                                                     BLOG CONTE...

FACEBOOK

  FACEBOOK (publications in the group LIGAMENTUM CAPITIS FEMORIS and this social network) A FACEBOOK section has been created (About publications in this social network). FACEBOOK GROUP  On creating a group.  OLDEST SYNONYMS  Post in Facebook groups. Planar models of the hip joint   Post in Facebook groups. The loading acting onthe femoral head   Post in Facebook groups. Visualization of the LCF by the medial approach   Post in Facebook groups. A FORCE THAT HELPS ROTATE THE PELVIS   Post in Facebook groups.  FIRST EXPERIMENTS ON A MECHANICAL MODEL   Post in Facebook groups. HIP JOINT MODEL WITH LCF ANALOGUE   Post in Facebook groups. EXTERNAL LIGAMENTS & LCF   Post in Facebook groups.  BIOMECHANICS OF THE HIP JOINT WITHOUT LCF   Post in Facebook groups. F. Pauwels vis-à-vis S. Arkhipov ☺   Post in Facebook groups.                           ...

INFERIOR PORTAL FOR HIP ARTHROSCOPY

  Combined PDF version of the article: Arkhipov SV. Arkhipov SV. Inferior Portal for Hip A rthroscopy: A Pilot Experimental Study. This page contains a photocopy of the publication. The links for downloading the PDF version and the addresses of the online versions are given below.  The original in Russian is available at the link: Нижний портал для артроскопии тазобедренного сустава . 

2008HeinerG

  Invention (Patent Application Publication): Heiner G. Implant as an intermediate layer between articulating joint surfaces. DE102007018341A1 (2008). [ translated from German ]   DE102007018341A1 Germany Inventor: Heiner Genrich Current Assignee: Individual Worldwide applications 2007 DE Application DE102007018341A events: 2007-04-13 Application filed by Individual 2007-04-13 Priority to DE102007018341A 2008-10-16 Publication of DE102007018341A1 Status: Ceased   Implant as an intermediate layer between articulating joint surfaces Heiner Genrich   Abstract A surgical implant is an interface between two articulated surfaces together forming a ball and socket joint. The articulation surface (1) and the facing bone surface (2) whose edge (13) is thinner than the centre section (15). The surface (2) matches that of the damaged bone surface. Description The The invention relates to an implant as intermediate between articulating articular surfaces, wherein the intermed...