Skip to main content

2014ArkhipovaAS

 

In 2014, at the International Olympics Space for school students, Alexandra Arkhipova presented a report on the feasibility of using joints with flexible elements in walking machines. The author was recognized as the overall winner (more details: cyclowiki.org). The report suggested: «An important area of possible application of walking robots would be remote exploration of other planets». Ten years later, professionals from NASA began to put this idea into practice: Robot dog trains to walk on Moon in Oregon trials (more details: bbc.com). Below we present the text of the first message about walking machines in space, the ball joint of which contains a flexible element - an analogue of the ligamentum capitis femoris (LCF).

 Mobile biomorphic platforms with analogues of natural locomotion algorithms

Arkhipova A.S.

For ten years of its mission, American wheeled Mars rover vehicle 'Opportunity' covered just 40 kilometers through the Red Planet, and its twin Spirit got stuck in sands already in 8 km. A troop of antelope’s gnu is capable of overcoming a distance up to 50 km a day across country, and mountain goats climb easily indomitable steeps. Such comparisons demonstrate obviously the advantages of walking as means of movement in nature.

In comparison to the side wheel and track machines, an ability of a machine to move by walking will give it a bigger stability on irregular surfaces, will provide an opportunity to choose the points of support, will increase its maneuvering ability and off-road capability, will make it possible to reduce energy costs per unit of a route, as well as will provide an opportunity to move freely in the human environment.

In this connection, many countries are carrying out actively the elaborations of the walking machines and robots. Walk of the zoomorphic and anthropomorphic walking robots created for the time being, needs significant energy expenditures, the task of the support points choosing for pedipulators is not solved to the full extent, and walking of anthropomorphic robots very often reminds of walking of people with disease. Owing to this fact, a spectrum of the walking platforms use is restricted significantly.

Normally, walking is an automated cyclic process. In a cycle of the person's step, they single out a period when one leg comes into contact with the bearing surface area, and the other leg is carried frontwards, as well as a period of a double support, during which we are supported at once by two legs. Animals' legs, when walking, may move both one by one and two by two. The robot technicians try to recreate such walking, verified by the very nature. Walking is a result of the sophisticated coordinated activities of the skeletal muscles of the body and limbs. Currently, the analogues of the muscles are used for the walking machinery movement - electric-powered drives and full hydraulic drives. And what about ligaments? What are they needed for?

In his thesis research S.V. Arkhipov showed that the ligament apparatus is necessary for movement, support of stability and muscular energy saving. Strained ligaments are capable of relieving muscles and even may give rise to separate movements. Absence of the analogues of ligaments in the framework of the walking platforms, from our point of view, is one of the reasons for misfortunes of the developers. One of the most important ligaments of the person and backboned animals is a ligament of head of femur. Its tension, when walking, provides an unloading of muscles, that hold a body, and of the upper sectors of the articular surfaces, as well as a spontaneous turn of a pelvis frontwards.

By analog with this joint, we have elaborated for the walking platform an articulated joint with flexible elements - analogues of ligaments of the hip joint. In order to study the peculiarities of its functioning, we have constructed an engineering test bed, which has become a prototype of a model of an afterbody of a walking platform. When reproducing a single-support period of a step in the experiment, we reduced an actuator force, holding a framework of an afterbody of a model. Flexible elements of the artificial joint were strained gradually, like ligaments on a hip joint, receiving to itself a weight of a model. Thereby it turned and shifted forth a useful load due to energy transformation of the general center of mass, raised earlier.

According to the data of the experiments, the displacement time diagrams of the general center of mass of the model have been constructed in the sagittal, horizontal and frontal planes. The movement pattern of the general center of mass of the model with the articulated joint without flexible elements is marked with a black bow on the displacement time diagram in the horizontal plane. Their comparison shows, how the flexible elements, introduced by us into the artificial joint, influence upon a time-distance graph.

Comparison of the diagrams has made it possible to construct a spatial time-distance graph of the general center of mass when modeling a single-support period of the step of the biomorphic platform.

According to our calculations, when raising the general center of mass of a model of the afterbody by 36 mm, we receive a spontaneous forwarding of a useful load by 63 mm, only under the action of gravity. The calculations show that under moving of the same mass by way of gliding, a much bigger energy is needed to be spent.

The data of the experiments have made it possible to optimize the single-support period of the step of a mobile biomorphic platform. Due to transformation of would-be energy of the raised general center of mass of the system.

Let us sum up the totals of my research:

- Walking is an optimal means of movement across rugged terrain.

- Articulated joint with flexible elements of our artificial joint is capable of creating a rotary moment in the horizontal plane.

- In a single-support period of a step of a walking platform, it's possible to provide its movement forward by would-be energy transformation of a useful load weight.

- Walking platform with artificial joint of our design will make it possible to reduce costs of energy for a unit of a route.

When creating the walking platforms for robots and means of transport, we offer to use articulated joints with flexure elements of our framework, as well as at walk of the walking platforms - to try to reproduce an algorithm of the natural locomotion.

Robotic engineering, will undoubtedly become widely used in space. Possibly in the future, each cosmic ship and satellite will have its own "repair robot". Such robots are already now eagerly sought at the International Cosmic Station, both for the works in its departments and at its surface in the open space. An important area of a possible application of the walking robots will be a remote investigation of other planets, as well as movement of astronauts and freights across their surface. 

Presentation: 2014АрхиповаАС 

Citation:

Arkhipova AS. Mobile biomorphic platforms with analogues of natural locomotion algorithms. Oral presentation at the International Olympics Space for school students. Korolev, 2014.

Authors & Affiliations

Alexandra Sergeevna Arkhipova

Lyceum of Scientific and Engineering Profile (КОРОЛЁВСКИЙ ЛИЦЕЙ НАУЧНО-ИНЖЕНЕРНОГО ПРОФИЛЯ)

Russia, Moscow Region, Korolyov

Keywords:

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, stepping platform, walking machine, robot, ball joint, joint with flexible elements   

                                                                     .

BLOG CONTENT

MECHANICS AND ROBOTICS

Comments

Popular posts from this blog

LCF in 2025 (September)

  LCF in 2025 ( September )   (Quotes from articles and books published in  September  2025 mentioning the ligamentum capitis femoris)   Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).   01 September 2025. PREPRINT (Version 1)  [i]   researchsquare.com   Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.   [ii]   link.springer.com   Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis , 37 (3), 171-177.    [iii]    pmc.ncbi.nlm.nih.gov      Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P....

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

0cent.4Q158.1-2

  Content [i]   Annotation [ii]   Original text [iii]   Translation [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments 1-2 of Dead Sea Scroll 4Q158.1-2, which previously contained part of Genesis 32 with a mention of ligamentum capitis femoris (LCF). We have translated the reconstructed text of M.M. Zahn (2009). The English translation is available at: 0 cent .4 Q 158.1-2 . [ii]   Original text Photocopy   Dead Sea Scroll 4Q158, fragments 1-2 (Plate 138, Frag. 4 B-358482), material – parchment, text – Hebrew, period – Herodian. A screenshot of the original from The Leon Levy dead sea scrolls Digital Library collection, © 2025 Israel Antiquities Authority  deadseascrolls.org.il   (Fair use for criticism, study and comparison; sharpening, color correction, and captions done by us.).   Transcription Dead Sea Scroll 4Q158, fragments 1-2, lines 11...

Grok. Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?".

  At our request, Grok, artificial intelligence developed by xAI, wrote a review of the article by Arkhipov SV. Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint ([Ru]  Архипов СВ . Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе. 06.04.2025 ). In accordance with the comments, the article was revised and sent for re-review to the ChatGPT language model prepared to assist in the analysis and editing of texts (OpenAI, 2025).  Below is the original text of the review by Grok: Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?: A Note on the Mysterious 'Dark Matter' of the Hip Joint". This review focuses on the analysis of argumentation, as requested. The author asserts that restoration of the acetabular labrum fails to prevent hip joint instability and osteoarthritis when the ligame...

LCF in 2025 (August)

  LCF in 2025 ( August )   (Quotes from articles and books published in  August  2025 mentioning the ligamentum capitis femoris)   Castro, A., de Melo, C., & Leal, F. (2025). Complications in hip Arthroscopy: Recognizing and managing adverse events. Journal of Clinical Orthopaedics and Trauma , 103144.   [i]   journal-cot.com   Negayama, T., Nishimura, H., Murata, Y., Nakayama, K., Takada, S., Nakashima, H., ... & Uchida, S. (2025). Factors associated with treatment failure after hip arthroscopic surgery for the patient with femoroacetabular impingement secondary to Legg-Calvé-Perthes disease. Journal of ISAKOS , 100937.   [ii]   jisakos.com   Wegman, S. J., Shaikh, H., Brodell Jr, J. D., Cook, P. C., & Giordano, B. D. (2025). Femoral head osteochondral allograft transplantation with and without simultaneous periacetabular osteotomy: a case series. Journal of Hip Preservation Surgery , hnaf037.   [iii] ...

2008HeinerG

  Invention (Patent Application Publication): Heiner G. Implant as an intermediate layer between articulating joint surfaces. DE102007018341A1 (2008). [ translated from German ]   DE102007018341A1 Germany Inventor: Heiner Genrich Current Assignee: Individual Worldwide applications 2007 DE Application DE102007018341A events: 2007-04-13 Application filed by Individual 2007-04-13 Priority to DE102007018341A 2008-10-16 Publication of DE102007018341A1 Status: Ceased   Implant as an intermediate layer between articulating joint surfaces Heiner Genrich   Abstract A surgical implant is an interface between two articulated surfaces together forming a ball and socket joint. The articulation surface (1) and the facing bone surface (2) whose edge (13) is thinner than the centre section (15). The surface (2) matches that of the damaged bone surface. Description The The invention relates to an implant as intermediate between articulating articular surfaces, wherein the intermed...

1541MondinoL_DryanderJ

  Fragment from the book Mondino de Luzzi, Dryander J. Anatomia Mundini (1541). An early description of the anatomy and role of the ligamentum capitis femoris (LCF) is presented. The pathogenesis of lameness and soft tissue atrophy in LCF pathology is discussed. For more details, see the commentary in  1541MondinoL_DryanderJ [Rus] .  Quote p. 62. [Lat] De anatomia cruris [&] pedis. Postea eleua musculos & chordas &, uide ossa. Et primura est os foemoris supra quod fabricatae sunt spondiles dorsi: & per consequens totum corpus in parte inferiori habet pixidem quondam, in cuius concauitate locata est extremitas rotunda canna coxae, que uocatur uertebrum. Et in medio amborum in parte anteriori est quod dam ligamentum, quod aliomodo porestuocari uertebrum: & quando hoc uel primum resilit foras: tunc niecesse ed hominem claudicare, quia crus hic elongatur & firmari non potest; & totum non bene potest supportari: & necesse eit etiam ut crus tab...

1993ArkhipovSV

  The publication describes the design of a total hip joint endoprosthesis, which became a prototype of an artificial hip joint with analogous to the ligamentum capitis femoris (LCF). Complete hip joint prosthesis designed by S.V. Arkhipova (Полный протез тазобедренного сустава конструкции С.В. Архипова ) Patent RU2089135 Inventor  Sergey Vasilyevich Arkhipov Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Сергей Васильевич Архипов 1993-12-30 Application filed by Сергей Васильевич Архипов 1993-12-30 Priority to RU93057862A 1996-07-27 Publication of RU93057862A 1997-09-10 Application granted 1997-09-10 Publication of RU2089135C1 Abstract FIELD: medicine; prosthetics. SUBSTANCE: proposed complete prosthesis for hip joint comprises femoral component and acetabular components, both components being interconnected by pivot. Outer surface of acetabular component is provided with threads and grooves. Shank is made in form of collet chuck, tabs of whi...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», August 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

17c.FranckenFII

  Frans Francken II , painting Jacob Wrestling with the Angel (16 – 17th cent.).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Frans  Francken II  –  Jacob Wrestling with the Angel  (16 – 17t...