Skip to main content

2014ArkhipovaAS

 

In 2014, at the International Olympics Space for school students, Alexandra Arkhipova presented a report on the feasibility of using joints with flexible elements in walking machines. The author was recognized as the overall winner (more details: cyclowiki.org). The report suggested: «An important area of possible application of walking robots would be remote exploration of other planets». Ten years later, professionals from NASA began to put this idea into practice: Robot dog trains to walk on Moon in Oregon trials (more details: bbc.com). Below we present the text of the first message about walking machines in space, the ball joint of which contains a flexible element - an analogue of the ligamentum capitis femoris (LCF).

 Mobile biomorphic platforms with analogues of natural locomotion algorithms

Arkhipova A.S.

For ten years of its mission, American wheeled Mars rover vehicle 'Opportunity' covered just 40 kilometers through the Red Planet, and its twin Spirit got stuck in sands already in 8 km. A troop of antelope’s gnu is capable of overcoming a distance up to 50 km a day across country, and mountain goats climb easily indomitable steeps. Such comparisons demonstrate obviously the advantages of walking as means of movement in nature.

In comparison to the side wheel and track machines, an ability of a machine to move by walking will give it a bigger stability on irregular surfaces, will provide an opportunity to choose the points of support, will increase its maneuvering ability and off-road capability, will make it possible to reduce energy costs per unit of a route, as well as will provide an opportunity to move freely in the human environment.

In this connection, many countries are carrying out actively the elaborations of the walking machines and robots. Walk of the zoomorphic and anthropomorphic walking robots created for the time being, needs significant energy expenditures, the task of the support points choosing for pedipulators is not solved to the full extent, and walking of anthropomorphic robots very often reminds of walking of people with disease. Owing to this fact, a spectrum of the walking platforms use is restricted significantly.

Normally, walking is an automated cyclic process. In a cycle of the person's step, they single out a period when one leg comes into contact with the bearing surface area, and the other leg is carried frontwards, as well as a period of a double support, during which we are supported at once by two legs. Animals' legs, when walking, may move both one by one and two by two. The robot technicians try to recreate such walking, verified by the very nature. Walking is a result of the sophisticated coordinated activities of the skeletal muscles of the body and limbs. Currently, the analogues of the muscles are used for the walking machinery movement - electric-powered drives and full hydraulic drives. And what about ligaments? What are they needed for?

In his thesis research S.V. Arkhipov showed that the ligament apparatus is necessary for movement, support of stability and muscular energy saving. Strained ligaments are capable of relieving muscles and even may give rise to separate movements. Absence of the analogues of ligaments in the framework of the walking platforms, from our point of view, is one of the reasons for misfortunes of the developers. One of the most important ligaments of the person and backboned animals is a ligament of head of femur. Its tension, when walking, provides an unloading of muscles, that hold a body, and of the upper sectors of the articular surfaces, as well as a spontaneous turn of a pelvis frontwards.

By analog with this joint, we have elaborated for the walking platform an articulated joint with flexible elements - analogues of ligaments of the hip joint. In order to study the peculiarities of its functioning, we have constructed an engineering test bed, which has become a prototype of a model of an afterbody of a walking platform. When reproducing a single-support period of a step in the experiment, we reduced an actuator force, holding a framework of an afterbody of a model. Flexible elements of the artificial joint were strained gradually, like ligaments on a hip joint, receiving to itself a weight of a model. Thereby it turned and shifted forth a useful load due to energy transformation of the general center of mass, raised earlier.

According to the data of the experiments, the displacement time diagrams of the general center of mass of the model have been constructed in the sagittal, horizontal and frontal planes. The movement pattern of the general center of mass of the model with the articulated joint without flexible elements is marked with a black bow on the displacement time diagram in the horizontal plane. Their comparison shows, how the flexible elements, introduced by us into the artificial joint, influence upon a time-distance graph.

Comparison of the diagrams has made it possible to construct a spatial time-distance graph of the general center of mass when modeling a single-support period of the step of the biomorphic platform.

According to our calculations, when raising the general center of mass of a model of the afterbody by 36 mm, we receive a spontaneous forwarding of a useful load by 63 mm, only under the action of gravity. The calculations show that under moving of the same mass by way of gliding, a much bigger energy is needed to be spent.

The data of the experiments have made it possible to optimize the single-support period of the step of a mobile biomorphic platform. Due to transformation of would-be energy of the raised general center of mass of the system.

Let us sum up the totals of my research:

- Walking is an optimal means of movement across rugged terrain.

- Articulated joint with flexible elements of our artificial joint is capable of creating a rotary moment in the horizontal plane.

- In a single-support period of a step of a walking platform, it's possible to provide its movement forward by would-be energy transformation of a useful load weight.

- Walking platform with artificial joint of our design will make it possible to reduce costs of energy for a unit of a route.

When creating the walking platforms for robots and means of transport, we offer to use articulated joints with flexure elements of our framework, as well as at walk of the walking platforms - to try to reproduce an algorithm of the natural locomotion.

Robotic engineering, will undoubtedly become widely used in space. Possibly in the future, each cosmic ship and satellite will have its own "repair robot". Such robots are already now eagerly sought at the International Cosmic Station, both for the works in its departments and at its surface in the open space. An important area of a possible application of the walking robots will be a remote investigation of other planets, as well as movement of astronauts and freights across their surface. 

Presentation: 2014АрхиповаАС 

Citation:

Arkhipova AS. Mobile biomorphic platforms with analogues of natural locomotion algorithms. Oral presentation at the International Olympics Space for school students. Korolev, 2014.

Authors & Affiliations

Alexandra Sergeevna Arkhipova

Lyceum of Scientific and Engineering Profile (КОРОЛЁВСКИЙ ЛИЦЕЙ НАУЧНО-ИНЖЕНЕРНОГО ПРОФИЛЯ)

Russia, Moscow Region, Korolyov

Keywords:

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, stepping platform, walking machine, robot, ball joint, joint with flexible elements   

                                                                     .

BLOG CONTENT

MECHANICS AND ROBOTICS

Comments

Popular posts from this blog

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

2025SarassaC_HerreraAM

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article : Sarassa C. et al . I ntraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance S tability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes (2025). The article describes a technique for fixing the femoral head using the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2025SarassaC_HerreraAM . [ii]   Original text Abstract Background Developmental dysplasia of the hip (DDH) with complete dislocation (grade ≥III) in older patients often requires open reduction. However, achieving long-term stability remains challenging. This study introduces and evaluates a novel surgical technique, intraosseous tunneling ...

2018YoussefAO

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Youssef AO. Medial approach open reduction with ligamentum teres partial excision and plication for the management of congenital hip dislocation (2018). The article describes a method for transposition of the proximal attachment of the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2018YoussefAO . [ii]   Original text Abstract Because of the known tendency for early redislocation following open reduction, we developed surgical methods for shortening the ligamentum teres to improve immediate postoperative stability when performing medial approach open reduction (MAOR) for the management of developmental dysplasia of the hip. Between 2004 and 2014, 32 patients w...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

Full access to the PDF version of the book: HUMAN CHILDREN

  Full access to the PDF version of the book is now available: Arkhipov S.V. Human Children: The Origins of Biblical Legends from a Physician's Perspective. An essay with references to interactive materials. 2nd revised and expanded edition. Joensuu: Author's Edition, 2025. (In Russian)].  Google Play  ,  Google Book , drive.google.com   ,   kruglayasvyazka.blogspot.com   [Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Эссе, снабженное ссылками на интерактивный материал. 2-е изд. перераб. и доп. Йоэнсуу : Издание Автора , 2025.]   Annotation The first version of the Book of Genesis appeared in Ancient Egypt approximately 3,600 years ago, during the Hyksos period. The work was conceived as a fairy tale epic. An unknown physician-encyclopedist, who is also presumed to have authored the Edwin Smith Papyrus, played a role in its composition. He supplemented the co-author's family legends, retellings of halluc...

2012MansmannKA

  Invention (Patent Application Publication): Mansmann KA. Tendon-sparing implants for arthroscopic replacement of hip cartilage. WO2012162571A1 (2012).  The original text of the document contained defects.   WO2012162571A1S US Inventor: Kevin A. Mansmann Worldwide applications 2012 WO Application PCT/US2012/039481 events: 2012-05-24 Application filed by Mansmann Kevin A 2012-11-29 Publication of WO2012162571A1   Tendon-sparing implants for arthroscopic replacement of hip cartilage Kevin A. Mansmann   Abstract Surgical implant devices are disclosed which will allow completely arthroscopic resurfacing of the acetabular socket, and the femoral head, in hip joints, in both humans, and in animals such as dogs. Such devices, made of flexible polymers with smooth articulating surfaces and porous anchoring surfaces, can be provided with centered openings, to allow a surgeon to spare the major ligament (the ligamentum teres) which connects the femoral head to the pelv...

1753TarinP

  Fragments from the book Tarin P. Ostéo-graphie (1753). The author notes the localization of ligamentum capitis femoris (LCF) and uses synonyms: ligament rond, ligamentum teres capitis femoris. The text is prepared for machine translation using a service built into the blog from Google or your web browser. Quote p. 24 Les Ligamens de l'extrémité inférieure sont, 1°. la Membrane capsulaire, &c. de la cavité cotyloïde, le Ligament rond, l'Appareil ligamenteux propre à cette cavité; le Ligament transveríal interne de son bord, le transversal externe, les deux Ligamens glanduleux; … Quote p. 54. Illæ tres offeæ portiones simul unitæ Cavitatem cotyloïdeam q.t. a. constituunt, in qua occurrit Foveols h. glandulas synoviales articulationis excipiens, cuique sesc inserit ligamentum teres capitis femoris, &c. Vid. t. u. v. TAB. I. II. III. External links Tarin P. Ostéo-graphie, ou Description des os de l'adulte, du foetus, &c. Precedée d'une introduction a l'etu...

Key Role of the LCF

  In the experiments conducted on the pelvis-femur-muscle-ligaments model, we found that when the contralateral pelvic drop occurs, the ligament of the head of femur become maximally tense; simultaneously, there is relaxation and lengthening of the gluteus medius muscle; the pelvis spontaneously rotates towards the stance limb (forward), and the load on the hip joint decreases. Thanks to the functioning of the ligament of the head of femur the walking is smooth, rhythmic, and energy-efficient. Track Music:  Blue Dot Sessions , Vittoro (CC BY-NC 4.0 DEED / fragment)  "Take care of the ligament of the head of femur for yourself and your neighbor!" .                                                                       . keywords: ligamentum capitis femoris, ligament of head of femur, ligamentum te...