Skip to main content

2014ArkhipovaAS

 

In 2014, at the International Olympics Space for school students, Alexandra Arkhipova presented a report on the feasibility of using joints with flexible elements in walking machines. The author was recognized as the overall winner (more details: cyclowiki.org). The report suggested: «An important area of possible application of walking robots would be remote exploration of other planets». Ten years later, professionals from NASA began to put this idea into practice: Robot dog trains to walk on Moon in Oregon trials (more details: bbc.com). Below we present the text of the first message about walking machines in space, the ball joint of which contains a flexible element - an analogue of the ligamentum capitis femoris (LCF).

 Mobile biomorphic platforms with analogues of natural locomotion algorithms

Arkhipova A.S.

For ten years of its mission, American wheeled Mars rover vehicle 'Opportunity' covered just 40 kilometers through the Red Planet, and its twin Spirit got stuck in sands already in 8 km. A troop of antelope’s gnu is capable of overcoming a distance up to 50 km a day across country, and mountain goats climb easily indomitable steeps. Such comparisons demonstrate obviously the advantages of walking as means of movement in nature.

In comparison to the side wheel and track machines, an ability of a machine to move by walking will give it a bigger stability on irregular surfaces, will provide an opportunity to choose the points of support, will increase its maneuvering ability and off-road capability, will make it possible to reduce energy costs per unit of a route, as well as will provide an opportunity to move freely in the human environment.

In this connection, many countries are carrying out actively the elaborations of the walking machines and robots. Walk of the zoomorphic and anthropomorphic walking robots created for the time being, needs significant energy expenditures, the task of the support points choosing for pedipulators is not solved to the full extent, and walking of anthropomorphic robots very often reminds of walking of people with disease. Owing to this fact, a spectrum of the walking platforms use is restricted significantly.

Normally, walking is an automated cyclic process. In a cycle of the person's step, they single out a period when one leg comes into contact with the bearing surface area, and the other leg is carried frontwards, as well as a period of a double support, during which we are supported at once by two legs. Animals' legs, when walking, may move both one by one and two by two. The robot technicians try to recreate such walking, verified by the very nature. Walking is a result of the sophisticated coordinated activities of the skeletal muscles of the body and limbs. Currently, the analogues of the muscles are used for the walking machinery movement - electric-powered drives and full hydraulic drives. And what about ligaments? What are they needed for?

In his thesis research S.V. Arkhipov showed that the ligament apparatus is necessary for movement, support of stability and muscular energy saving. Strained ligaments are capable of relieving muscles and even may give rise to separate movements. Absence of the analogues of ligaments in the framework of the walking platforms, from our point of view, is one of the reasons for misfortunes of the developers. One of the most important ligaments of the person and backboned animals is a ligament of head of femur. Its tension, when walking, provides an unloading of muscles, that hold a body, and of the upper sectors of the articular surfaces, as well as a spontaneous turn of a pelvis frontwards.

By analog with this joint, we have elaborated for the walking platform an articulated joint with flexible elements - analogues of ligaments of the hip joint. In order to study the peculiarities of its functioning, we have constructed an engineering test bed, which has become a prototype of a model of an afterbody of a walking platform. When reproducing a single-support period of a step in the experiment, we reduced an actuator force, holding a framework of an afterbody of a model. Flexible elements of the artificial joint were strained gradually, like ligaments on a hip joint, receiving to itself a weight of a model. Thereby it turned and shifted forth a useful load due to energy transformation of the general center of mass, raised earlier.

According to the data of the experiments, the displacement time diagrams of the general center of mass of the model have been constructed in the sagittal, horizontal and frontal planes. The movement pattern of the general center of mass of the model with the articulated joint without flexible elements is marked with a black bow on the displacement time diagram in the horizontal plane. Their comparison shows, how the flexible elements, introduced by us into the artificial joint, influence upon a time-distance graph.

Comparison of the diagrams has made it possible to construct a spatial time-distance graph of the general center of mass when modeling a single-support period of the step of the biomorphic platform.

According to our calculations, when raising the general center of mass of a model of the afterbody by 36 mm, we receive a spontaneous forwarding of a useful load by 63 mm, only under the action of gravity. The calculations show that under moving of the same mass by way of gliding, a much bigger energy is needed to be spent.

The data of the experiments have made it possible to optimize the single-support period of the step of a mobile biomorphic platform. Due to transformation of would-be energy of the raised general center of mass of the system.

Let us sum up the totals of my research:

- Walking is an optimal means of movement across rugged terrain.

- Articulated joint with flexible elements of our artificial joint is capable of creating a rotary moment in the horizontal plane.

- In a single-support period of a step of a walking platform, it's possible to provide its movement forward by would-be energy transformation of a useful load weight.

- Walking platform with artificial joint of our design will make it possible to reduce costs of energy for a unit of a route.

When creating the walking platforms for robots and means of transport, we offer to use articulated joints with flexure elements of our framework, as well as at walk of the walking platforms - to try to reproduce an algorithm of the natural locomotion.

Robotic engineering, will undoubtedly become widely used in space. Possibly in the future, each cosmic ship and satellite will have its own "repair robot". Such robots are already now eagerly sought at the International Cosmic Station, both for the works in its departments and at its surface in the open space. An important area of a possible application of the walking robots will be a remote investigation of other planets, as well as movement of astronauts and freights across their surface. 

Presentation: 2014АрхиповаАС 

Citation:

Arkhipova AS. Mobile biomorphic platforms with analogues of natural locomotion algorithms. Oral presentation at the International Olympics Space for school students. Korolev, 2014.

Authors & Affiliations

Alexandra Sergeevna Arkhipova

Lyceum of Scientific and Engineering Profile (КОРОЛЁВСКИЙ ЛИЦЕЙ НАУЧНО-ИНЖЕНЕРНОГО ПРОФИЛЯ)

Russia, Moscow Region, Korolyov

Keywords:

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, stepping platform, walking machine, robot, ball joint, joint with flexible elements   

                                                                     .

BLOG CONTENT

MECHANICS AND ROBOTICS

Comments

Popular posts from this blog

Set of Classifications

  General Classification of LCF Pathology Version : 20240420 Annotation Analysis of literature data and our own morphological observations allowed us to propose a General Classification of LCF Pathology. Introduction In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. L.I. Gaevskaya distinguished three types of LCF: 1) long and thick (length 41–51 mm, thickness 5 mm), 2) short and thin (length 10–20 mm, thickness 1 mm), 3) long and of small thickness (length 43–45 mm, with a thickness of 3 mm, and length 28–30 mm with a thickness of 4–5 mm) (1954 ГаевскаяЛИ ). V.V. Kovanov, A.A. Travin identified three varieties of histological structure of LCF: 1) with a predominance of loose connective tissue; 2) with a predominance of dense connective tissue; 3) with a uniform distribution of loose and dense connective tissue ( 1963 КовановВВ _ ТравинАА ). The development of arthroscopic surgery has made it possible to i...

Topography of the Acetabular Canal

   Version : 20250728 Topography of the Acetabular Canal Side Femoral (lateral) Pelvic (medial)   Contents Synovial fluid Ligamentum capitis femoris (LCF) White adipose tissue Loose connective tissue Synovial membrane Transverse acetabular ligament Arteries Veins Nerves Lymphatic vessels   Sections Peripheral section Central section Subsynovial section Suprasynovial section   Peripheral Section Entrance foramen -- Upper edge -- Lower edge -- Anterior edge -- Posterior edge External segment (subligamentous) - Superior wall - Inferior wall - Posterior wall - Anterior wall Internal segment (extraligamentous) - Subsynovial part (tier) -- Superior wall -- Inferior wall -- Posterior wall -- Anterior wall - Suprasinovial part (tier) -- Superior wall -- Inferior wall -- Posterior wall -- Anterior wall   Central Section Iliac recess Ischial recess Subsynovial part (tier) - Outer margin - Medial wall - Lateral wall - Anteroinferior wall - Posteroinferior wall - Supra...

LCF in 2025 (July)

    LCF in 2025 ( July )   (Quotes from articles and books published in July 2025 mentioning the ligamentum capitis femoris.) Tekcan, D., Bilgin, G., & Güven, Ş. Evaluation of Risk Factors for Developmental Dysplasia of the Hip. HAYDARPAŞA NUMUNE MEDICAL JOURNAL , 65 (2), 99-103.   [i]   jag.journalagent.com   Domb, B. G., & Sabetian, P. W. (2025). Greater Trochanteric Pain Syndrome: Gluteal Tendinopathy, Partial Tear, Complete Tear, Iliotibial Band Syndrome, and Bursitis. In Orthopaedic Sports Medicine (pp. 1-17). Springer, Cham.   [ii]   link.springer.com   Kuhns, B. D., Becker, N., Patel, D., Shah, P. P., & Domb, B. G. (2025). Significant Heterogeneity in Existing Literature Limits Both Indication and Outcome Comparability Between Studies Involving Periacetabular Osteotomy For Acetabular Dysplasia With or Without Arthroscopy Despite Improvement for Both: A Systematic Review. Arthroscopy .   [iii]   ...

BLOG CONTENT

  T he ligament of the head of femur or ligamentum capitis femoris (LCF) is the key to a graceful gait and understanding the causes of hip joint diseases. We present promising scientific knowledge necessary for preserving health,  to create new implants and techniques  of treating degenerative  pathology and damage of the hip joint. Project objective : preserving a normal gait and quality of life, helping to study of hip joint biomechanics, developing effective treatments for its diseases and injuries. In translating to English, the author is assisted by ChatGPT (version 3.5)  and the Google Translate service .  We're sorry for any flaws in the syntax. The meaning makes up for the imperfections!     TABLES OF CONTENTS    Acetabular Canal   (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligam...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», June 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

1864MacalisterA

  Content [i]   Annotaction [ii]   Original in  English [iii]   Translated into  German [iv]   Illustrations [v]   Source  &  links [vi]   Notes [vii]   Authors & Affiliations [viii]   Keywords [i]   Annotaction Fragment of the article: Macalister A. On the anatomy of the ostrich (Struthio camelus) (1864). The author observed ligamentum capitis femoris (LCF) in an ostrich. Its strength is noted, and its shape is described. Translation into Russian is available at the link: 1864MacalisterA .  [ii]   Original in  English   Quote, p. 22 The articulations of the lower extremity present many points of mechanical importance. The first, or the hip, is an enarthrosis, surrounded by a capsule, loose, expanding inferiorly; the synovial membrane spreads over the great trochanter; a strong transverse band passes from the border of the lesser sciatic notch to the upper and posterior edge of the acetab...

1835CooperAP

  Fragments of the book Cooper AP. Lectures on the Principles and Practice of Surgery (1835) dedicated to ligamentum capitis femoris (LCF). The author discusses LCF injury during hip dislocation and notes the important role of its blood vessels in supplying the femoral head.   Quote p. 577 DISLOCATIONS OF THE HIP JOINT … It generally happens when the thighs are widely separated from each other, that the ligamentum teres and capsular ligament are torn through, and the head of the bone is situated on the obturator externus muscle at the inner and back part of the thigh. Quote pp. 584-585 ON DISLOCATIONS OF THE THIGH BONE … But the third and principal reason is, the almost entire absence of ossific union in the head of the bone when detached from its cervix. The principal supply of blood to the head of the bone being derived from the ligamentum teres, which has only a few minute vessels ramifying from it on the bone, the natural supply of blood for the neck and head ...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», May 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :  Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent research...

OLDEST SYNONYMS

  There are more than 100 terms for ligamentum capitis femoris. The oldest synonyms:   Sumer (ca. 5500 – ca. 2004 BCE): [sa] [Eng] 911-612bcK2453 https://roundligament.blogspot.com/2024/09/911-612bck2453.html For more details, see the comment from: [Rus] 911-612bcK2453 https://kruglayasvyazka.blogspot.com/2024/09/911-612bck2453.html   Ancient Egypt (ca. 3150 BC – 332 BCE): [mt /met] [Eng] 1650-1550bcImhotep the Younger https://roundligament.blogspot.com/2024/09/1650-1550bcimhotep-younger.html For more details, see the comment from: [Rus] 1650-1550bcImhotep the Younger   https://kruglayasvyazka.blogspot.com/2024/09/1650-1550bcimhotep-younger.html   Akkadian Empire (ca. 2334 – 2154 BCE): [nimsu]   [Eng] 2000-1600bcBM29663 https://roundligament.blogspot.com/2024/09/2000-1600bcbm29663.html For more details, see the comment from: [Rus] 2000-1600bcBM29663 https://kruglayasvyazka.blogspot.com/2024/09/2000-1600bcbm29663.html   Ancient Israel and Judah (ca...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», February 2025

    SCIENTIFIC THEMATIC ONLINE JOURNAL « About Round Ligament of Femur » February, 2025 The publication is dedicated to the ligamentum capitis femoris (LCF) and related topics.   About the Journal The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. Updates: As new materials are prepared.  Purpose:  Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal: Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint.   Announcements 25.02.2025 A Facebook group « LIGAMENTUM CAPITIS FEMORIS »  has been created.  26.02.2025 The scientific blog « About Round Ligament of Femur » has been transformed into an online journal of the same name.   Surgical Treatment ...