Skip to main content

2014ArkhipovaAS

 

In 2014, at the International Olympics Space for school students, Alexandra Arkhipova presented a report on the feasibility of using joints with flexible elements in walking machines. The author was recognized as the overall winner (more details: cyclowiki.org). The report suggested: «An important area of possible application of walking robots would be remote exploration of other planets». Ten years later, professionals from NASA began to put this idea into practice: Robot dog trains to walk on Moon in Oregon trials (more details: bbc.com). Below we present the text of the first message about walking machines in space, the ball joint of which contains a flexible element - an analogue of the ligamentum capitis femoris (LCF).

 Mobile biomorphic platforms with analogues of natural locomotion algorithms

Arkhipova A.S.

For ten years of its mission, American wheeled Mars rover vehicle 'Opportunity' covered just 40 kilometers through the Red Planet, and its twin Spirit got stuck in sands already in 8 km. A troop of antelope’s gnu is capable of overcoming a distance up to 50 km a day across country, and mountain goats climb easily indomitable steeps. Such comparisons demonstrate obviously the advantages of walking as means of movement in nature.

In comparison to the side wheel and track machines, an ability of a machine to move by walking will give it a bigger stability on irregular surfaces, will provide an opportunity to choose the points of support, will increase its maneuvering ability and off-road capability, will make it possible to reduce energy costs per unit of a route, as well as will provide an opportunity to move freely in the human environment.

In this connection, many countries are carrying out actively the elaborations of the walking machines and robots. Walk of the zoomorphic and anthropomorphic walking robots created for the time being, needs significant energy expenditures, the task of the support points choosing for pedipulators is not solved to the full extent, and walking of anthropomorphic robots very often reminds of walking of people with disease. Owing to this fact, a spectrum of the walking platforms use is restricted significantly.

Normally, walking is an automated cyclic process. In a cycle of the person's step, they single out a period when one leg comes into contact with the bearing surface area, and the other leg is carried frontwards, as well as a period of a double support, during which we are supported at once by two legs. Animals' legs, when walking, may move both one by one and two by two. The robot technicians try to recreate such walking, verified by the very nature. Walking is a result of the sophisticated coordinated activities of the skeletal muscles of the body and limbs. Currently, the analogues of the muscles are used for the walking machinery movement - electric-powered drives and full hydraulic drives. And what about ligaments? What are they needed for?

In his thesis research S.V. Arkhipov showed that the ligament apparatus is necessary for movement, support of stability and muscular energy saving. Strained ligaments are capable of relieving muscles and even may give rise to separate movements. Absence of the analogues of ligaments in the framework of the walking platforms, from our point of view, is one of the reasons for misfortunes of the developers. One of the most important ligaments of the person and backboned animals is a ligament of head of femur. Its tension, when walking, provides an unloading of muscles, that hold a body, and of the upper sectors of the articular surfaces, as well as a spontaneous turn of a pelvis frontwards.

By analog with this joint, we have elaborated for the walking platform an articulated joint with flexible elements - analogues of ligaments of the hip joint. In order to study the peculiarities of its functioning, we have constructed an engineering test bed, which has become a prototype of a model of an afterbody of a walking platform. When reproducing a single-support period of a step in the experiment, we reduced an actuator force, holding a framework of an afterbody of a model. Flexible elements of the artificial joint were strained gradually, like ligaments on a hip joint, receiving to itself a weight of a model. Thereby it turned and shifted forth a useful load due to energy transformation of the general center of mass, raised earlier.

According to the data of the experiments, the displacement time diagrams of the general center of mass of the model have been constructed in the sagittal, horizontal and frontal planes. The movement pattern of the general center of mass of the model with the articulated joint without flexible elements is marked with a black bow on the displacement time diagram in the horizontal plane. Their comparison shows, how the flexible elements, introduced by us into the artificial joint, influence upon a time-distance graph.

Comparison of the diagrams has made it possible to construct a spatial time-distance graph of the general center of mass when modeling a single-support period of the step of the biomorphic platform.

According to our calculations, when raising the general center of mass of a model of the afterbody by 36 mm, we receive a spontaneous forwarding of a useful load by 63 mm, only under the action of gravity. The calculations show that under moving of the same mass by way of gliding, a much bigger energy is needed to be spent.

The data of the experiments have made it possible to optimize the single-support period of the step of a mobile biomorphic platform. Due to transformation of would-be energy of the raised general center of mass of the system.

Let us sum up the totals of my research:

- Walking is an optimal means of movement across rugged terrain.

- Articulated joint with flexible elements of our artificial joint is capable of creating a rotary moment in the horizontal plane.

- In a single-support period of a step of a walking platform, it's possible to provide its movement forward by would-be energy transformation of a useful load weight.

- Walking platform with artificial joint of our design will make it possible to reduce costs of energy for a unit of a route.

When creating the walking platforms for robots and means of transport, we offer to use articulated joints with flexure elements of our framework, as well as at walk of the walking platforms - to try to reproduce an algorithm of the natural locomotion.

Robotic engineering, will undoubtedly become widely used in space. Possibly in the future, each cosmic ship and satellite will have its own "repair robot". Such robots are already now eagerly sought at the International Cosmic Station, both for the works in its departments and at its surface in the open space. An important area of a possible application of the walking robots will be a remote investigation of other planets, as well as movement of astronauts and freights across their surface. 

Presentation: 2014АрхиповаАС 

Citation:

Arkhipova AS. Mobile biomorphic platforms with analogues of natural locomotion algorithms. Oral presentation at the International Olympics Space for school students. Korolev, 2014.

Authors & Affiliations

Alexandra Sergeevna Arkhipova

Lyceum of Scientific and Engineering Profile (КОРОЛЁВСКИЙ ЛИЦЕЙ НАУЧНО-ИНЖЕНЕРНОГО ПРОФИЛЯ)

Russia, Moscow Region, Korolyov

Keywords:

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, stepping platform, walking machine, robot, ball joint, joint with flexible elements   

                                                                     .

BLOG CONTENT

MECHANICS AND ROBOTICS

Comments

Popular posts from this blog

13c.Soligalich

   Soligalich , icon, Jacob wrestling with the angel ( 13 cent. ).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob wa s left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Soligalich  – Jacob Wrestling with the Angel ( 13 cent. ); original in the  leonovval...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An Instrument of Knowledge and Innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     R                   T                   ...

Who, When, and Where Wrote the Book of Genesis?

  Who, When, and Where Wrote the Book of Genesis?  A Medical Hypothesis By Sergey V. Arkhipov, MD, PhD & Lyudmila N. Arkhipova, BSN     CONTENT [i]   Abstract [ii]   Introduction [iii]   Egyptian physician [iv]   Asian diviner [v]   Conclusion [vi]   References [vii]   Application [i]   Abstract The Book of Genesis is an example of an ancient literary text that contains important medical insights. We propose that it was written in northern Egypt in the late 17th century BCE, approximately ten years after the Minoan eruption. The protograph likely emerged from the collaboration between an Asiatic seer, who rose to the rank of an Egyptian official, and an Egyptian physician-encyclopedist. By refining its dating and authorship, this hypothesis positions Genesis as a credible source of medical and historical data, thereby enhancing its value for interdisciplinary research. [ii]   Introduction According to Rabbinic Judais...

CRITICAL MASS OF CONSENSUS

Online version from 07/03/2025   Critical mass of consensus:  Opinions on the importance of ligamentum capitis femoris (XX-XXI century) Arkhipov S . V. Content [i]   Abstract [ii]   Opinions [iii]   Authors & Affiliations [iv]   References [v]   Appendices [i]   Abstract This evolving article collects views on the importance of the ligamentum capitis femoris (LCF) to the musculoskeletal system. Our collection aims to highlight the emerging fundamental shift in the current consensus in the orthopaedic and musculoskeletal research communities regarding the meaning of LCF. Here the convinced convince others. Ultimately, this once-unconventional idea will become established knowledge, enabling a transformation in clinicians’ thinking and in approaches to the prevention, diagnosis, and treatment of hip joint pathologies. [ii]   Opinions   2025 «The LT [LCF] works as a secondary static stabilizer of the hip by acting as a sling to preven...

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

LCF in 2025 (May)

  LCF in 2025 (May): Quotes from articles and books published in May 2025 mentioning the ligamentum capitis femoris. Teytelbaum, D. E., Bijanki, V., Samuel, S. P., Silva, S., Israel, H., & van Bosse, H. J. Does Open Reduction of Arthrogrypotic Hips Cause Stiffness?. Journal of Pediatric Orthopaedics , 10-1097. DOI: 10.1097/BPO.0000000000002940  [i]   journals.lww.com   SANTORI, N., & TECCE, S. M. (2025). FUTURE DIRECTIONS IN ARTHROSCOPY FOR HIP TRAUMA. Advancements of Hip Arthroscopy in Trauma , 136-143.  [ii]   books.google   RANDELLI, F. (2025). ARTHROSCOPIC FREE-BODY REMOVAL AFTER DISLOCATION OR AFTER BULLET/BOMB. Advancements of Hip Arthroscopy in Trauma , 1-11.  [iii]   books.google   APRATO, A. (2025). ARTHROSCOPIC TECHNIQUES FOR FEMORAL HEAD FRACTURE REDUCTION AND FIXATION. Advancements of Hip Arthroscopy in Trauma , 38.  [iv]   books.google   Brinkman, J. C., & Hartigan, D. E. (2025). Indications f...

INFERIOR PORTAL FOR HIP ARTHROSCOPY

  Combined PDF version of the article: Arkhipov SV. Arkhipov SV. Inferior Portal for Hip A rthroscopy: A Pilot Experimental Study. This page contains a photocopy of the publication. The links for downloading the PDF version and the addresses of the online versions are given below.  The original in Russian is available at the link: Нижний портал для артроскопии тазобедренного сустава . 

Inferior Portal. Part 2.

  Original in Russian is available at the link:  Нижний портал. Часть 2.  below is a machine translation edited by a non-native speaker.     INFERIOR PORTAL FOR HIP ARTHROSCOPY: A PILOT STUDY PART 2.  Inferior Portal Prototypes Arkhipov S.V., Independent Researcher, Joensuu, Finland   CONTENTS PART 1.  Background and Hypothesis [1] . Introduction [2] .  Passage through the Inferior Portal [3] .  Main Advantages of the Proposed Technique [4] .  Specific Risks of the Proposed Technique [5] .  Main Limitations of the Proposed Technique [6] . References (Part 1)   PART 2. Inferior Portal Prototypes [7] . Open Reduction [8] .  Puncture and Arthrography [9] . Arthroscopy and Debridement [10] . References (Part 2)   [7] . Open  R eduction   Our idea to reduce the trauma of hip joint surgery through an inferior approach has a rich history. In the spring of 1907, Professor Karl Rudolf Ludloff (1864-1945, photo )...

ARTICLE ANNOUNCEMENT: THE BOOK OF BERESHIT AS A GREAT COMPILATION

  Article Announcement: «The Book of Bereshit as a Great Compilation of Texts and Meanings from the Second Intermediate Period of Egypt: A Pilot Culturological, Medical, Archaeological, and Textological Examination of the Legends versus Traditional Attribution»   By Sergey V. Arkhipov, MD, PhD  Joensuu, Finland   Abstract The Book of Bereshit (Genes is) was composed in Egypt during the 17th century BCE and reached its definitive protographic form following the Minoan eruption  of Thera . This study argues that the work was a collaborative effort between an Egyptian physician-encyclopedist and an outstanding scribe of Asiatic origin, operating within a sophisticated administrative and scientific framework. By analyzing anatomical descriptions, Bronze Age economic data, and climatic markers, this paper demonstrates that the text originated as a high-level socio-political commission within the Egyptian House of Life. Keywords Genesis Protograph, Bereshi...

LCF in 2026 (January)

  L CF in 2026 ( January )   (Quotes from articles and books published in  January  2026 mentioning the ligamentum capitis femoris)   Villegas Meza, A. D., Nocek, M., Felan, N. A., Speshock, A., Bolia, I. K., & Philippon, M. J. (2025). Hip Microinstability: Current Concepts in Diagnosis, Surgical Management, and Outcomes A Narrative Review. Open Access Journal of Sports Medicine , 205-221.   [i]   tandfonline.com   ,   dovepress.com   Wang, C. H., Wang, J. H., Lin, Y. H., Shih, C. A., & Hong, C. K. (2026). An Unusual Mechanical Cause of Hip Subluxation Following Modified Dunn Procedure for Slipped Capital Femoral Epiphysis: A Case Report. Formosan Journal of Musculoskeletal Disorders , 10-4103.   [ii]     journals.lww.com   Alsaghaier, A. (2026). Results of spica cast in treatment of developmental dysplasia of the hip in children between 6-18 Months. Journal of Academic Research , 30 , 28-43.   [...