Skip to main content

1857TurnerW

 

The fragment from Sir William Turner's Human Anatomy and Physiology narrates the involvement of the ligamentum capitis femoris (LCF) in distributing loads across the femoral head (1857TurnerW). The author, nearly two centuries ago, described the exceptionally important role of this structure - «interarticular or suspensory ligament». Unfortunately, this opinion was ignored by subsequent researchers of the biomechanics of the hip joint. 


CHAPTER III. JOINTS AND LIGAMENTS, pp. 41-46.

Divisions of the Moveable Joint — The two chief varieties of the moveable joint are the ball and socket and the hinge.

The best examples of the Ball and Socket are seen in the hip and shoulder joints: the hip is the more perfect of the two, because the cavity into which the globular head of the thigh bone is received is deeper than the cavity that receives the head of the arm bone. In both joints, when fresh, the hollow or socket is deeper than when the dry bones merely are examined, for there is attached to the margin of the hollow a fibrous ring, which, by projecting outwards for some distance, adds considerably to its depth. This embraces the heads of the bones, and assists greatly in keeping them in their position.

In Fig. 1, q. and p. represent the outer surfaces of the shoulder and hip joints.

The ligament that especially characterizes this form of joint is the membranous or capsular. It completely surrounds the articular surfaces of the bones, enclosing them, as it were, in a bag. It is connected by one extremity to the outer surface of the socket, whilst by the other it firmly embraces the constricted part, or neck of that bone on which the head is situated. This kind of ligament allows great extent of movement to take place in the joint, the ball or head of the long bone being permitted to roll about in every direction. The ball and socket joint may be very fully illustrated by examining the hip-joint.

Fig. 3 represents a vertical section of the right hip-join, to show its internal structure.

a. Articular Cartilage.

b. Synovial Membrane.

c Capsular Ligament.

The synovial membrane may here be traced lining the inner surface of the ligament, and covering the articular cartilage. In this joint the capsular ligament is not the only agent which retains the bones in their proper position, for the fibrous ring, before described as deepening the socket, closely clasps the articular end of the thigh bone, and thus materially assists in retaining the articular surfaces closely together. The action of this fibrous ring has been compared by some anatomists to that of the common leather sucker employed by boys for raising stones or other weights from the ground. It so closely embraces the thigh bone that neither air nor fluid are permitted to he between the articular surfaces. Hence the pressure of the atmosphere acting upon the exterior of the thigh, forces the ball into the socket, and keeps it there.

In the interior of the joint is a strong band of fibres called the interarticular or suspensory ligament (d.) This is connected by its upper end to a depression a little above the centre of the head of the thigh bone, by its lower end to the lower margin of the great hollow (acetabulum) in the haunch bone, which receives that head.

When a person is standing erect, or with the body slightly bent, a portion of the weight of the trunk is borne directly by the heads of both thigh bones, or of one thigh bone, according as he stands upon one or both legs, owing to the direct pressure of the acetabula upon the heads of those bones. Now, as the end of this ligament that is connected to the lower margin of the acetabulum is much lower than the end connected to the thigh bone, it of necessity suspends that portion of the weight of the body which is thrown upon it.

The effect of this is, to distribute over the head of the thigh bone that weight which, supposing the suspensory ligament had not been present, would have been sustained by that portion merely which is in direct contact with the upper part of the acetabulum.

The hip and shoulder joints possess very extensive movements. Of the two the hip is the least moveable, because upon these joints the whole weight of the body is thrown in the act of standing, so that, having to bear at times considerable pressure, they are required to be of a deeper and firmer construction than the shoulder. Hence, in them we find the bones much larger, the sockets for the reception of the heads much deeper, and the connecting ligaments much more tense and strong. The shoulder, on the other hand, in order that free play may be given to the arms, has a shallow socket, and a capsular ligament, which is much more lax than the corresponding structure in the hip.

The Hinge Joint has its best representative in the elbow. The knee-joint and the joints of the fingers and toes also present examples of it.

The kind of ligament that more especially characterizes this form of joint is the lateral ligament; so that in all hinge joints strong ligaments may be found on each side. These vary slightly in their shape, some being flat, others rounded; but they all agree in this respect, that they possess great strength. They are connected by their extremities to projections at the sides of the ends of the bones* which they bind together. It is essential to the proper working of the hinge, that the surfaces should move backwards and forwards upon each other, without any lateral displacement taking place. This is attained by the mode of connection of the strong lateral ligaments. The knee-joint, from its great size, possesses very well marked lateral ligaments.

Fig. 1 (m.) gives the external appearance of the elbow-joint.

Fig. 4 exhibits the appearance of the interior when the ligament in front it cut across.

a. Articular Cartilage,

b. Synovial Membrane.

Although the ends of three bones,

h. Humerus,

u. Ulna,

r. Radius,

are seen, yet it is only between two of them, the humerus and ulna, that the proper movements of the hinge are performed; these performed are forwards, termed flexion, and backwards, termed extension. The accuracy of these movements is insured by the presence of a pulley-like surface on the humerus at a, to which a ridge on the articular surface of the ulna closely corresponds, fitting into it, and moving readily in it in the backward and forward action of the joint.

The radius, from its close connection to the ulna, mores backwards and forwards along with it, yet it cannot be said to form an essential part of the hinge. It possesses, however, a very beautiful movement of its own upon the ulna, for its head is closely confined within a ring, represented in Fig. 5 (a.), formed partly of a smooth concave surface on the outer side of the ulna, and partly of a strong annular ligament connected to the ends of this surface: within this ring the head of the radius rolls.

The movement between these bones is effected when the hand, placed on a flat surface, with the palm downwards, is turned so that the palm looks upwards; this is called supination of the hand and fore-arm. When the hand is again returned to its original position, the movement of pronation is performed. The joint between the upper ends of the radius and ulna la not, however, the only one concerned in the production of these movements. For a corresponding joint exists also at their lower extremities; only at this latter joint tie radios has the concave surface, to which a convexity at the end of the ulna corresponds. The radius is the moveable bone, the ulna remaining in its position. So that, owing to the exactly opposite arrangement of the articular extremities of the two bones, daring pronation and supination, whilst the upper end of the radios rolls in the cavity of the ulna, its lower end may be regarded as revolving around the convexity of the ulna. The steadiness and delicacy of these movements are also increased, when the elbow is bent, by the cap-shaped cavity at the head of the radius receiving the small rounded surface of the part of the humerus corresponding to it. A sort of central point or axis is thus afforded, upon which the movements take place. Hence, when it is necessary to perform any movement with the fore arm, in which pronation and supination are to be called into action, and which requires either strength or precision for its execution, the elbow is always bent, for the radius now possesses a fixed point upon which it can move. This may be illustrated by the common operation of inserting a corkscrew into a cork. This is effected by the alternation of these two movements, and, as may readily be ascertained by trying it, is much more easily done when the arm is slightly bent, than when it is extended.

There is no movement, between the two bones of the leg, corresponding to that of pronation or supination performed by the two bones of the fore arm; for the leg, being for the purpose of supporting the weight of the body, it is necessary that it should be strong and steady. Hence the joints between the upper and lower ends of the tibia and fibula are of such a nature as to allow scarcely any movement at all to take place between the two bones.

Owing to the ligaments connecting the different bones in a finger being lateral ligaments, the movements possessed by these bones are flexion and extension. These kinds of movements, together with the numerous joints, eminently adapt the hand for the performance of its various duties. Thus, the diffident joints in the fingers can be so bent that each finger may be made to assume the form of a hook; the bending of the whole of the fingers, in this hook-like manner, enables us to suspend the whole weight of the body upon an object grasped by them. The movement that especially characterises the hand of man is that of opposition; that is, by which the thumb can be made to oppose or touch any part of the palmar surface of the hand and fingers. This gives to the hand unusual power in grasping objects, and compressing them, if needful, with great force, whilst this force can be so nicely regulated, that movements requiring the most delicate manipulation can be undertaken with equal readiness.




References

Turner W. Atlas and Handbook of Human Anatomy and Physiology. Edinburgh: W. & A.K. Johnston, 1857. [archive.org , books.google]

Authors & Affiliations

William Turner (1832–1916), was a demonstrator of anatomy and Professor of Anatomy at the University of Edinburgh, the Principal of the University of Edinburgh from 1903 to 1916. [wikipedia.org]

Sir William Turner (1881)
The author of the image is G. Jerrard;
Original in the wikimedia.org collection (CC-BY-4.0, no changes)


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, role, significance, biomechanics

.                                                                     .

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7


BLOG CONTENT


BIOMECHANICS AND MORPHOMECHANICS

Comments

Popular posts from this blog

BLOG CONTENT

  T he ligament of the head of femur or ligamentum capitis femoris (LCF) is the key to a graceful gait and understanding the causes of hip joint diseases. We present promising scientific knowledge necessary for preserving health,  to create new implants and techniques  of treating degenerative  pathology and damage of the hip joint. Project objective : preserving a normal gait and quality of life, helping to study of hip joint biomechanics, developing effective treatments for its diseases and injuries. In translating to English, the author is assisted by ChatGPT (version 3.5)  and the Google Translate service .  We're sorry for any flaws in the syntax. The meaning makes up for the imperfections!     TABLES OF CONTENTS    Acetabular Canal   (Anatomy, topography and significance of the functioning area of ​​the ligamentum capitis femoris) Acetabular Canal.  Part 1.   This article describes the space where the ligam...

1827KühnCG

  Fragment from the book Kühn CG. Clavdii Galeni Opera omnia (1827). Pseudo-Galen notes the connecting function of the ligamentum capitis femoris (LCF) and also specifies the proximal and distal attachment sites. See our commentary at the link: 1827KühnCG [Rus].  Quote [Grc] Εἰσαγωγὴ   ἢ   Ἰτρός . K εφ .  ιβ . [ Περί   όστεολογἰας .] μηρου δέ έν μεν οστούν .  συμβάλλει δε επικεκαμμένη μετρίως τη κεφαλή αυτού εις βαθείαν κοτύλην του ισχίου και νεύρῳ απήρτηται εκφυομένω εκ μέσης της κοτύλης και εμφυομένω εις μέσην την κεφαλήν του μηρού . (original source: 1827KühnCG, pp. 723-724) [Lat Introductio, seu Medicus. Cap. XII.   [De osteologia] Femoris os unum est, cujus caput leniter reflexum in coxae profundum sinum conjicitur. Quam commissuram nervus, qui e medio sinu prodit et in medium femoris caput inseritur, continet. (original source: 1827KühnCG, pp. 723-724) Translation [Eng] Introduction, or the Physician. Chapter 12. [On osteology] The hip has ...

The Solar System

  The Solar System As a result of a mysterious catastrophic event about 13.8 billion years ago, the Universe was formed (2012HawkingS; 2020AghanimN_RoudierG). In it, giant cloud-like accumulations of plasma, molecules and dust became the points of star formation (2011MurrayN). A series of their generations, igniting, functioning and collapsing, led to the appearance of various chemical elements through staged reactions of nuclear fusion (1998IshkhanovBS_TutynIA). The Sun was born for at least ten million years by compressing a concentration of molecular gas and parts of the most ancient stars (2010HanslmeierA). As a result, 4.5682-4.567 billion years ago, the Solar System self-organized, at the dawn of its life consisting of a central luminary and a protoplanetary gas and dust disk (2013HazenRM). At least the oldest meteorite inclusions were fused 4.568-4.565 billion years ago, and at most three million years later, accretion of chondrite globules occurred (1995AllègreCJ_GöpelC). T...

2003IvanovYV

  Ivanov YV, panel, wood carving – Jacob Wrestling with the Angel (2003). Variant of depicting the  circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis:  25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Ivanov Yuri Vitalievich – Jacob Wrestling with the Angel (2003);  im...

1666VeslingJ

  Fragments from the book Vesling J. Syntagma anatomicum (1666). The author describes the attachment, properties and role of the ligamentum capitis femoris (LCF). The text uses several synonyms: ligamentum teres, rotundo, tereti. Quote p. 269 [Lat] Superior appendix cum adjuncto processu, amplum, globosum que femoris caput constituit, valida cervice subnixum, quod intra cavitatem ossis Ischii, Ilium, & Pubis concursu productam, (Acetabulum alias, Pyxidemque nominant) reconditur. Detinetur in hoc sinu robustis LIGAMENTIS: lato uno, & membranoso, quod articulum totum circumdat, tum rotundo altero, & tereti, quod ab ipsa cavitate productum, statim in caput susceptum demittitur. Quote p. 276 [Lat] Fig. VII … b. Ligamentum teres, ex Acetabulo natum. Translation [Eng] Quote p. 269 . The superior appendage, together with the accessory process, forms the large, spherical head of the femur, supported by a strong neck, which is placed in a cavity formed by the ischium, ilium, and...

1614PlatterF

Fragment from the book Platter F. Observationum (1614). The author notes the role of the ligamentum capitis femoris (LCF) in fixing the femur in the acetabulum and the possibility of its lengthening  (synovitis) . Quote pp. 141-142 [Lat] Cruris dextri astrictio & contractio, post coxendicum dolorem. Cùm enim ligamentum illud articulum circumd ás, omnium totius corporis ligamentorum, quae articulos ambiunt, sit amplissimum; fieri potest, ut adeò cedat, ut (sicuti saepe sit) femoris caput, è suo sinu devoluatur, & in membranae illius (quae cùm erassissima sit, prae omnibus totius corporis ligamentis, nunquam vi qualicunque disrumpi potest) amplitudine seu capacitate subsistat, elongato simul & vehementer attracto, tereti illo & crasso, quod caput aliàs in suo sinu retinere solet, ligamento. Quod & ob tensionem illam nimiam, astrictum & induratum, chordae alicuius crasssissimae & firmisimae instar, quae nunquam disrumpi, nunquam ab acetabulo, cuius cartilag...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», July 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

344-411Rufinus Aquileiensis

  A fragment of the manuscript of the translation of Josephus Flavius' Antiquities of the Jews ( Ἰουδαϊκὴ ἀρχαιολογία / De antiquitate iudaica) into Latin by Rufinus Aquileiensis. The translator worked approximately between 344 and 411 in the Roman Empire. His work was rewritten between 1150 and 1199 in Northern France. In Josephus's translation of Antiquities of the Jews, ligamentum capitis femoris (LCF) is referred to as «neruum». The selected fragment deals with the LCF of an animal and discusses a biblical episode of its damage in a human. See our commentary at the link: 344-411Rufinus Aquileiensis [Rus]. T he original text: 93-94JosephusF . Quote [ Lat] De antiquitate iudaica. Liber primus (original source: 1150JosephusF, p. 22, fragment) Translation [Eng] Antiquities of the Jews. Book 1. 20.2 When Jacob had made these appointments all the day, and night came on, he moved on with his company; and, as they were gone over a certain river called Jabboc, Jacob was left behi...

1794LoderJC

  Drawings and descriptions from book Loder JC. Tabulae anatomicae (1794). Image of the hip joint, ligamentum capitis femoris (LCF) and peripheral part of the acetabular canal ( hiatus acetabuli ,  see Fig. 2.10) .   External links Loder JC. Tabulae anatomicae quas ad illustrandam humani corporis fabricam colle git et curavit. Vinariae, 1794. [ wellcomecollection.org ] Authors & Affiliations Justus Ferdinand Christian Loder (1753-1832) was a German anatomist and surgeon, professor of surgery and anatomy at the University of Jena. [ wikipedia.org ] Justus Christian Loder (1801?) Engraving by F. Müller after a painting by Fr. A. Tischbein; original in the  wikimedia.org   collection (CC0 – Public Domain, no changes)   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, image                                    ...

150-250Targum Jonathan

  Fragments from the Targum Jonathan on Genesis. Tractate was written between about 150 - 250 in lend of Israel. The text is a combination of a translation and commentary on the book of Bereshit. The unknown compiler mentions ligamentum capitis femoris (LCF) in an animal and an episode of its damage in a human. See our commentary at the link: 150-250Targum Jonathan [Rus]. Quote 1. [Heb] Genesis. 32:33 (original source:  sefaria.org ) Quote 2. [Heb] Genesis. 43:16 (original source:  sefaria.org ) Translation Quote 1. [Eng] Genesis. 32:33 Therefore, the sons of Israel eat not the sinew which shrank, which is in the hollow of the thigh of cattle and of wild animals, until this day; because the Angel touched and laid hold of the hollow of the right thigh of Jakob, in the place of the sinew which shrank. (Transl. by J.W. Etheridge (186 2 ) ; original source: targum.info ) Quote 2. [Eng] Genesis. 43:16 And Joseph saw Benjamin with them: and he said to Menasheh whom he had mad...