Skip to main content

1857TurnerW

 

The fragment from Sir William Turner's Human Anatomy and Physiology narrates the involvement of the ligamentum capitis femoris (LCF) in distributing loads across the femoral head (1857TurnerW). The author, nearly two centuries ago, described the exceptionally important role of this structure - «interarticular or suspensory ligament». Unfortunately, this opinion was ignored by subsequent researchers of the biomechanics of the hip joint. 


CHAPTER III. JOINTS AND LIGAMENTS, pp. 41-46.

Divisions of the Moveable Joint — The two chief varieties of the moveable joint are the ball and socket and the hinge.

The best examples of the Ball and Socket are seen in the hip and shoulder joints: the hip is the more perfect of the two, because the cavity into which the globular head of the thigh bone is received is deeper than the cavity that receives the head of the arm bone. In both joints, when fresh, the hollow or socket is deeper than when the dry bones merely are examined, for there is attached to the margin of the hollow a fibrous ring, which, by projecting outwards for some distance, adds considerably to its depth. This embraces the heads of the bones, and assists greatly in keeping them in their position.

In Fig. 1, q. and p. represent the outer surfaces of the shoulder and hip joints.

The ligament that especially characterizes this form of joint is the membranous or capsular. It completely surrounds the articular surfaces of the bones, enclosing them, as it were, in a bag. It is connected by one extremity to the outer surface of the socket, whilst by the other it firmly embraces the constricted part, or neck of that bone on which the head is situated. This kind of ligament allows great extent of movement to take place in the joint, the ball or head of the long bone being permitted to roll about in every direction. The ball and socket joint may be very fully illustrated by examining the hip-joint.

Fig. 3 represents a vertical section of the right hip-join, to show its internal structure.

a. Articular Cartilage.

b. Synovial Membrane.

c Capsular Ligament.

The synovial membrane may here be traced lining the inner surface of the ligament, and covering the articular cartilage. In this joint the capsular ligament is not the only agent which retains the bones in their proper position, for the fibrous ring, before described as deepening the socket, closely clasps the articular end of the thigh bone, and thus materially assists in retaining the articular surfaces closely together. The action of this fibrous ring has been compared by some anatomists to that of the common leather sucker employed by boys for raising stones or other weights from the ground. It so closely embraces the thigh bone that neither air nor fluid are permitted to he between the articular surfaces. Hence the pressure of the atmosphere acting upon the exterior of the thigh, forces the ball into the socket, and keeps it there.

In the interior of the joint is a strong band of fibres called the interarticular or suspensory ligament (d.) This is connected by its upper end to a depression a little above the centre of the head of the thigh bone, by its lower end to the lower margin of the great hollow (acetabulum) in the haunch bone, which receives that head.

When a person is standing erect, or with the body slightly bent, a portion of the weight of the trunk is borne directly by the heads of both thigh bones, or of one thigh bone, according as he stands upon one or both legs, owing to the direct pressure of the acetabula upon the heads of those bones. Now, as the end of this ligament that is connected to the lower margin of the acetabulum is much lower than the end connected to the thigh bone, it of necessity suspends that portion of the weight of the body which is thrown upon it.

The effect of this is, to distribute over the head of the thigh bone that weight which, supposing the suspensory ligament had not been present, would have been sustained by that portion merely which is in direct contact with the upper part of the acetabulum.

The hip and shoulder joints possess very extensive movements. Of the two the hip is the least moveable, because upon these joints the whole weight of the body is thrown in the act of standing, so that, having to bear at times considerable pressure, they are required to be of a deeper and firmer construction than the shoulder. Hence, in them we find the bones much larger, the sockets for the reception of the heads much deeper, and the connecting ligaments much more tense and strong. The shoulder, on the other hand, in order that free play may be given to the arms, has a shallow socket, and a capsular ligament, which is much more lax than the corresponding structure in the hip.

The Hinge Joint has its best representative in the elbow. The knee-joint and the joints of the fingers and toes also present examples of it.

The kind of ligament that more especially characterizes this form of joint is the lateral ligament; so that in all hinge joints strong ligaments may be found on each side. These vary slightly in their shape, some being flat, others rounded; but they all agree in this respect, that they possess great strength. They are connected by their extremities to projections at the sides of the ends of the bones* which they bind together. It is essential to the proper working of the hinge, that the surfaces should move backwards and forwards upon each other, without any lateral displacement taking place. This is attained by the mode of connection of the strong lateral ligaments. The knee-joint, from its great size, possesses very well marked lateral ligaments.

Fig. 1 (m.) gives the external appearance of the elbow-joint.

Fig. 4 exhibits the appearance of the interior when the ligament in front it cut across.

a. Articular Cartilage,

b. Synovial Membrane.

Although the ends of three bones,

h. Humerus,

u. Ulna,

r. Radius,

are seen, yet it is only between two of them, the humerus and ulna, that the proper movements of the hinge are performed; these performed are forwards, termed flexion, and backwards, termed extension. The accuracy of these movements is insured by the presence of a pulley-like surface on the humerus at a, to which a ridge on the articular surface of the ulna closely corresponds, fitting into it, and moving readily in it in the backward and forward action of the joint.

The radius, from its close connection to the ulna, mores backwards and forwards along with it, yet it cannot be said to form an essential part of the hinge. It possesses, however, a very beautiful movement of its own upon the ulna, for its head is closely confined within a ring, represented in Fig. 5 (a.), formed partly of a smooth concave surface on the outer side of the ulna, and partly of a strong annular ligament connected to the ends of this surface: within this ring the head of the radius rolls.

The movement between these bones is effected when the hand, placed on a flat surface, with the palm downwards, is turned so that the palm looks upwards; this is called supination of the hand and fore-arm. When the hand is again returned to its original position, the movement of pronation is performed. The joint between the upper ends of the radius and ulna la not, however, the only one concerned in the production of these movements. For a corresponding joint exists also at their lower extremities; only at this latter joint tie radios has the concave surface, to which a convexity at the end of the ulna corresponds. The radius is the moveable bone, the ulna remaining in its position. So that, owing to the exactly opposite arrangement of the articular extremities of the two bones, daring pronation and supination, whilst the upper end of the radios rolls in the cavity of the ulna, its lower end may be regarded as revolving around the convexity of the ulna. The steadiness and delicacy of these movements are also increased, when the elbow is bent, by the cap-shaped cavity at the head of the radius receiving the small rounded surface of the part of the humerus corresponding to it. A sort of central point or axis is thus afforded, upon which the movements take place. Hence, when it is necessary to perform any movement with the fore arm, in which pronation and supination are to be called into action, and which requires either strength or precision for its execution, the elbow is always bent, for the radius now possesses a fixed point upon which it can move. This may be illustrated by the common operation of inserting a corkscrew into a cork. This is effected by the alternation of these two movements, and, as may readily be ascertained by trying it, is much more easily done when the arm is slightly bent, than when it is extended.

There is no movement, between the two bones of the leg, corresponding to that of pronation or supination performed by the two bones of the fore arm; for the leg, being for the purpose of supporting the weight of the body, it is necessary that it should be strong and steady. Hence the joints between the upper and lower ends of the tibia and fibula are of such a nature as to allow scarcely any movement at all to take place between the two bones.

Owing to the ligaments connecting the different bones in a finger being lateral ligaments, the movements possessed by these bones are flexion and extension. These kinds of movements, together with the numerous joints, eminently adapt the hand for the performance of its various duties. Thus, the diffident joints in the fingers can be so bent that each finger may be made to assume the form of a hook; the bending of the whole of the fingers, in this hook-like manner, enables us to suspend the whole weight of the body upon an object grasped by them. The movement that especially characterises the hand of man is that of opposition; that is, by which the thumb can be made to oppose or touch any part of the palmar surface of the hand and fingers. This gives to the hand unusual power in grasping objects, and compressing them, if needful, with great force, whilst this force can be so nicely regulated, that movements requiring the most delicate manipulation can be undertaken with equal readiness.



References

Turner W. Atlas and Handbook of Human Anatomy and Physiology. Edinburgh: W. & A.K. Johnston, 1857. [archive.org , books.google]

Authors & Affiliations

William Turner (1832–1916), was a demonstrator of anatomy and Professor of Anatomy at the University of Edinburgh, the Principal of the University of Edinburgh from 1903 to 1916. [wikipedia.org]

Sir William Turner (1881)
The author of the image is G. Jerrard;
Original in the wikimedia.org collection (CC-BY-4.0, no changes)


Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, role, significance, biomechanics

.                                                                     .

NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7


BLOG CONTENT


BIOMECHANICS AND MORPHOMECHANICS

Comments

Popular posts from this blog

4cent.Gothic Bible

  About the Book of Genesis of the Gothic Bible (4th century). A Gothic term that may have been used to refer to the ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 4cent.Gothic Bible [Rus]. Quote [ Got ] Genesis 32:33 (possible term;  original source  lost) Translation [Eng] Genesis 32:33 The original text and English translation are currently unavailable to our project. Suggested term: … gabinda ( gabundi) … The closest analogue is in the Epistle to the Colossians 2:19 — jah ni habands haubiþ, us þammei all leik þairh gawissins jah gabindos auknando jah þeihando wahseiþ du wahstau gudis. — καὶ οὐ κρατῶν τὴν κεφαλήν , ἐξ οὗ πᾶν τὸ σῶμα διὰ τῶν ἁφῶν καὶ συνδέσμων ἐπιχορηγούμενον καὶ συμβιβαζόμενον αὔξει τὴν αὔξησιν τοῦ θεοῦ . — And not holding the Head, from which all the body by joints and bands having nourishment ministered, and knit together, increaseth with the increase of God. (original source: wulfila.be ; Codex Ambrosianus? Milan, Bi

2018FreitasA_BandeiraVC

  The authors reported a case of open hip dislocation and documented avulsion of the ligamentum capitis femoris (LCF) from the acetabulum.  The injured LCF appeared as a large cord-like structure, attached to the femoral head ( Fig. 1 ). Perhaps Hippocrates of Kos saw such an LCF in open dislocation of the hip and described it in his treatise «Mochlicus» ( 1886AdamsF ). One year later, the patient's x-ray revealed a significant narrowing of the joint space in the upper part of the hip joint ( Fig. 9 ). In our opinion, this to be a consequence of hyaline cartilage wear due to overload in the absence of LCF. In an unaffected hip joint, the width of the radiological joint space at the upper section than in the lower section ( Ossification of the LCF ). When examined one year after the injury, the patient could stand on one leg. We noticed that his body was excessively deviated towards the supporting hip joint, and the opposite half of the pelvis was elevated ( Fig. 8 ). This is a me

1875BrauneW

  We present a study dedicated to the experimental investigation of the function of the ligamentum capitis femoris (LCF). Wilhelm Braune established that the LCF prevents hip supination and adduction, especially during flexion. In the conclusion of the study, the author writes: "It also remains to determine in which body movements this ligament function plays a role, as it is currently unclear why the femur requires a special fixing device…". Apparently, Wilhelm Braune did not have time to find the answer, since his outstanding monograph on LCF does not say a word ( Braune W, Fischer O. Der Gang des Menschen (1895 books.google ) . Based on our own experiments on mechanical models and research, we believe that adduction and supination of the hip, along with flexion, are observed at the beginning of the single-support period of the step. At this moment, tension occurs in the LCF, allowing to reduce the load on the upper segment of the femoral head. The LCF is also stretched in

927-942Arabic Bible

  Fragment of the Book of Bereshit   translated into Arabic by Saadia Gaon  ( 927-942 ) . The Arabic text contains mentioned to ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 927-942ArabicBible [Rus].  Quote [ a ra] التكوين  32:32 (original source: 1653WaltonB, p. 145) See also modern editions:   لذلك لا يأكل بنو اسرائيل عرق النّسا الذي على حقّ الفخذ الى هذا اليوم . لانه ضرب حقّ فخذ يعقوب على عرق النّسا (original source: arabicbible.com )  لِذَلِكَ لا يَاكُلُ بَنُو اسْرَائِيلَ عِرْقَ النَّسَا الَّذِي عَلَى حُقِّ الْفَخِْذِ الَى هَذَا الْيَوْمِ لانَّهُ ضَرَبَ حُقَّ فَخْذِ يَعْقُوبَ عَلَى عِرْقِ النَّسَا (original source: copticchurch.net ) Translation [Eng] Genesis 32:32 Translation of the text is currently unavailable for our project. The term for the LCF:  النّسا   ~  sciatica  ( see also: 70-110Rufus Ephesius ; 180-238PolluxJ ) Saʻadia ben Joseph . Pentateuch ( 1600) , p. 1  ( original:  digital.library.yu.edu ) External links Saʻadia

2016ArkhipovaAS Classification of Joints with Flexible Elements.

  Classification of Joints with Flexible Elements The classification of joints with flexible elements was first proposed by A.S. Arkhipova in 2016 and presented at conferences in 2016-2017 ( 2017АрхиповаАС ). Joints with flexible elements are divided by the author into detachable and non-detachable, three-axis, two-axis, and single-axis. Each can contain in various combinations one or more external and internal flexible elements - analogs of joint ligaments, including the ligamentum capitis femoris (LCF). Conditional designations of joints with flexible elements using the example of a ball joint: Detachable ball joint with an internal flexible element Non-detachable ball joint with an internal flexible element Detachable ball joint with an external flexible element Non-detachable ball joint with an external flexible element Detachable ball joint with both internal and external flexible elements Non-detachable ball joint with both internal and external flexible elements Flexible e

1879MorrisH

  Fragments of the book Morris H. The anatomy of the joints of man (1879) dedicated to ligamentum capitis femoris (LCF). The author discusses the anatomy of the LCF and describes his experiments to study its movement.   Quote p p . 318-319 The acetabulum is partly articular, partly non-articular. The articular portion is of horseshoe shape, and extends inwards from the margin, more or less. It is altogether deficient at the cotyloid notch, which corresponds with the gap of the horseshoe. It is the widest at the iliac part, where it is over one inch from without inwards; then it very gradually gets narrower along the ischium, but widens out again at the ischial end of the cotyloid notch ; forwards from the pubo-iliac suture it narrows more rapidly, and does not extend quite up to the pubic end of the cotyloid notch. At its narrowest point in an adult bone it measures half an inch in width. When coated with cartilage, and fringed round with the cotyloid ligament, it fits very closel

DIAGNOSTICS AND EXAMINATION

  DIAGNOSTICS AND EXAMINATION   (Diagnostic, examination and testing methods... ) Catalog. LCF Pathology Tests   Tests for the detection of pathology LCF.  2004VialleR_GlorionC  The article discusses the examination technique for dislocation of the femur and describes the radiographic symptom of infringement of the damaged LCF. BLOG CONTENT

150-250Targum Jonathan

  Fragments from the Targum Jonathan on Genesis. Tractate was written between about 150 - 250 in lend of Israel. The text is a combination of a translation and commentary on the book of Bereshit. The unknown compiler mentions ligamentum capitis femoris (LCF) in an animal and an episode of its damage in a human. See our commentary at the link: 150-250Targum Jonathan [Rus]. Quote 1. [Heb] Genesis. 32:33 (original source:  sefaria.org ) Quote 2. [Heb] Genesis. 43:16 (original source:  sefaria.org ) Translation Quote 1. [Eng] Genesis. 32:33 Therefore, the sons of Israel eat not the sinew which shrank, which is in the hollow of the thigh of cattle and of wild animals, until this day; because the Angel touched and laid hold of the hollow of the right thigh of Jakob, in the place of the sinew which shrank. (Transl. by J.W. Etheridge (186 2 ) ; original source: targum.info ) Quote 2. [Eng] Genesis. 43:16 And Joseph saw Benjamin with them: and he said to Menasheh whom he had made superintende

1679DiemerbroeckI

  Fragments from the book Diemerbroeck I. Anatome corporis humani (1679). The author describes the pathology variants, function, topography and attachment of the ligamentum capitis femoris (LCF). The damage to the LCF in hip dislocation, symptoms and treatment are discussed. The text is similar to a paraphrase of Hegetor's work «On Causes» and Galen of Pergamon's commentary on Hippocrates' treatise «On Joints» ( 1745CocchiA ;  2020ArkhipovSV_ProlyginaIV ). Isbrand van Diemerbroeck uses many synonyms for LCF: nervus cartilaginosus, terete, teres, rotundum ligamentum, interius ligamentum. Quote p. 593. [Lat] CAPUT XIX. De Ossibus Femoris, & Cruris. Superius procesum crassum, versus coxendicis os prominentem, eique epiphyin rotundam & amplam impositam habet, sicque globosum femoris caput, valida cervice subnixum, constituit, quod cartilagine obductum in coxendicis acetabulum reconditur, in eoque duobus validis ligamentis detinetur: uno lato, crasso, & membranoso,

2014ArkhipovaAS

  In 2014, at the International Olympics Space for school students, Alexandra Arkhipova presented a report on the feasibility of using joints with flexible elements in walking machines. The author was recognized as the overall winner (more details: cyclowiki.org ). The report suggested: «An important area of possible application of walking robots would be remote exploration of other planets». Ten years later, professionals from NASA began to put this idea into practice: Robot dog trains to walk on Moon in Oregon trials (more details: bbc.com ). Below we present the text of the first message about walking machines in space, the ball joint of which contains a flexible element - an analogue of the ligamentum capitis femoris (LCF).   Mobile biomorphic platforms with analogues of natural locomotion algorithms Arkhipova A.S. For ten years of its mission, American wheeled Mars rover vehicle 'Opportunity' covered just 40 kilometers through the Red Planet, and its twin Spirit go