Skip to main content

New Biomechanics in Illustrations

 

The New Biomechanics of the Hip Joint: A Pictorial Essay

S.V. Arkhipov 

INTRODUCTION 

First in the history of humanity, the mention of ligamentum capitis femoris (LCF) and the pathomechanics of walking associated with its damage is found in the ancient literary monument “Book of Genesis” (32:24-24,31-32), created approximately 3600 years ago (2019Arkhipov_Skvortsov; 2023Архипов).

Fig. 1 The LCF = ligamentum teres of the hip joint, drawing by H.V. Carter (1870Grey).

Fig. 2 Pencil drawing “Crossing of the Jabbok River” based on the “Book of Genesis” 32:22 (author: Lyudmila Arkhipova, 2008).

The first description of LCF in a medical text is given by Hippocrates of Kos in the treatise “Instruments of Reductions” or “Mochlicus”, written in the V-IV centuries BCE (1844Littre).

We know that with the normal LCF, walking it is light, rhythmic, and symmetrical, but we don't know “why”. See video: Supplement 1 Normal Walking

We don't even know why we wiggle our pelvis when walking!

It is known that during single-leg support in normal walking, adduction occurs in the hip joint and the pelvis tilts in the opposite direction.

Fig. 3. Walking in vivo – single-leg support phase in norm; video frame.

Fig. 4. Walking in vitro – single-leg support phase in norm; video frame (2013Архипов).

Fig. 5. Instrumental 3D gait analysis; left – single-leg support phase in normal walking; right – graphs of pelvic and thigh movements in the frontal plane.

Pelvic tilt and adduction in the supporting hip joint in a single-support position are observed.

Fig. 6. Transition from two-legged to single-legged stance (2013Архипов).

In the statue's pose, a pelvic tilt and adduction in the supporting hip joint are observed too.

Fig. 7 Biblical David (artist: Michelangelo, 1501–1504; copy in the Pushkin State Museum, Moscow).

Such a pelvic position was noticed in ancient times, see: Logios Hermes (5th century BCE), Diadumenos (about 420 BCE), Aphrodite of Knidos (4th century BCE), Hercules of the Forum Boarium (2th century BCE), Victorious Youth (300–100 BCE), Antikythera Ephebe (70–60 BCE).

The first image of the pelvic tilt in a medical book is an illustration Andreae Vesalius' treatise “De humani corporis fabrica” (1543Vesale).

Fig. 8. Drawing in the book “De humani corporis Fabrica” (1543Vesale); illustration “Studio of Titian” (Tiziano Vecelli) or Jan Stephan van Calcar (1987Harcourt).

Later, we see this in William Cheselden's “Osteographia” (1733).

Fig. 9. Drawing in the book “Osteographia” (1733Cheselden); author Gerard Vandergucht and/or Jacob Schijnvoet (2011Kornell).

Why do we wiggle pelvis while the walking and the tilt it in the standing position? Our hypothesis: for tensioning of the LCF.

Galen of Pergamum (II-III c. AD) in “Hippocratis de articulis liber Galeni in eum commentarii quatuor” calls LCF - “ἰσχυρότατος” i.e., “strongest” (1829Kühn). Wenger et al (2007): LCF strength can reach 882±168 N! Theoretically, LCF can function as a pelvic suspension.

Fig. 10 Galen of Pergamon; drawing from the book “Operum Hippocratis Coi, et Galeni Pergameni…” (1638René).

Nobel Laureate János (Hans) Selye (1907-1982) wrote that a significant contribution to the study of stress was made through simple means (1960Селье).

Fig. 11 Photographic portrait of prof. Hans Selye (original on the site wikipedia.org, CC BY-SA 4.0, ½ part of the image).

We also initiated research on the biomechanics of the hip joint using simplified models...

DISCUSSION 

I. Initially, it was confirmed that the tilt of the pelvis and hip adduction lead to tensioning of the LCF.

Fig. 12 A planar model of the hip joint with the LCF analog (made before 2004); overall view of the model.

Fig. 13 Simulation of adduction and abduction on a planar model of the hip joint with an LCF analogue.

II. Experiments on a model of the hip joint (synthetic bones) with the LCF analog.

Fig. 14 The model of the hip joint with the LCF analog; modeling of abduction and adduction; visualization of the LCF tension.

III. Experiments on a mechanical model of the hip joint with the LCF analog.

Fig. 15 The mechanical model of the hip joint with the LCF analog; connection of the components and overall view of the model.

Fig. 16 The mechanical model of the hip joint with the LCF analog; modeling of abduction and adduction.

We have proven that LCF serves as the adduction limiter and pelvic stabilizer.


IV. Experiments on a mechanical model of the hip joint with a planar model of the pelvic part and the LCF analog, as well as, a mechanical model of the femoral head with the LCF analog.

We observed the effect of pressing the acetabulum to the head of the femur.

Fig. 17 The mechanical model of the hip joint with a planar model of the pelvic part and the LCF analog – modeling of adduction (left); mechanical model of the femoral head with the LCF analog – emergence of the resultant force (right).

The effect of pressing the acetabulum against the femoral head is important in preventing hip dislocation.

V. Tensioning of the LCF forms a cable-stayed type of pelvic suspension and provides additional support to the body.

Fig. 18 The planar model of the hip joint with the LCF analog (1/2 of the pelvic part); modeling of adduction.

A cable-stayed bridge as an analogy of the pelvic–LCF system.

Fig. 19 The cable-stayed bridge (Vladivostok, Russia).

The LCF functions as a cable-stayed type of pelvic suspension.

VI. Transformation of the hip joint into a class three lever and compression on the lower sector of the femoral head; experiments on a mechanical model of the proximal femur with the LCF analog.

Fig. 20 The mechanical model of the proximal femur with the LCF analog; modeling of adduction.

Fig. 21 The planar model of the hip joint with the LCF analog (1/2 of the pelvic part); modeling of adduction – compression on the lower sector of the femoral head occurs.

Tensioning of the LCF causes the appearance of compression in the lower sector of the femoral head.

VII. The reaction force of the LCF reduces compression on the upper sector of the femoral head and increases it in the lower sector.

Fig. 22 The mechanical model of the hip joint with a planar model of the pelvic part and the LCF analog; modeling of abduction.

VIII. Morphological Evidence.

In the lower sector of the femoral head, the cartilaginous layer is thinner because the compression from the lower sector of the acetabulum is greater.

Fig. 23. Fracture of the femoral neck and traumatic rupture of the LCF; intraoperative observation; pay attention to the thickness of the cartilage in the lower sector of the femoral head.


Ligamentous-muscular interaction provides compression of the upper end of the femur.

Fig. 24 Simplified scheme of the interaction between LCF and muscles in the hip joint area.

The medial sector of the second trabecular system of the upper end of the femur is the result of pressure on the lower sector of the femoral head from the acetabulum side.

Fig. 25 Trabecular systems of the femur and pelvis; II M – medial area of the second trabecular system.

IX. Tensioned LCF shunts the body mass and unloads the abductor muscle group of the hip joint.

Fig. 26. Mechanical model of the hip joint with an LCF analog and an analog of the abductor muscle group.

LCF serves as a shunt for body mass and transforms the hip joint into a class three lever.

X. Without LCF, the hip joint functions only as a class one lever.

Fig. 27 Mechanical model of the hip joint with an analog of the abductor muscle group and without an LCF analog.

XI. Contradiction as evidence.

In “classic biomechanics” (without LCF), the hip joint functions as a class one lever. Compression of the femoral head in a single-support stance is 175 kg (1976Pauwels), reaching 229 kg during normal walking (1993Bombelli).

Fig. 28 Schemes of “classic biomechanics” of the hip joint (illustrations from Pauwels (1976), and Bombelli (1993) as graphic quotations).

In some cases, during walking, compression exceeds the subject's weight by 5.8 times (1966Paul).

Some researchers question, “...what compensates for the enormous forces applied to the femoral head?” (1975Янсон).

Indeed, what can compensate for the immense pressure on the femoral head?

Paul (1966), Pauwels (1976), and Bombelli (1993) are correct; in the absence of LCF, the force generated by the abductor muscle group is approximately three times the body weight: i.e., equivalent to 210 kg with a total body mass of 70 kg.

Fig. 29. Lever model of the hip joint (without an LCF analog).

Kapandji (2009): m. gluteus medius can develop force – 16 kg, m. gluteus minimus – 4.9 kg, m. tensor fascia lata – 7.6 kg; i.e., a total of 28.5 kg!

XII. Paradox of the m. gluteus medius as evidence.

During single-leg support, in the middle and end of the single-support phase of the gait cycle, the force (electromyographic activity) of the m. gluteus medius is reduced.

Fig. 30 EMG of the m. gluteus medius; instrumental 3D gait analysis.


The reason for the reduction in muscle activity is the tensioning of LCF.


XIII. During single-leg stance, in the pose of the ancient statue, and in the single-support phase of the gait cycle, LCF is tensioned.

Fig. 31. Pelvic tilt and thigh adduction during walking; LCF is tensioned.

XIV. X-ray in a single-leg standing position (radiographic confirmation).

Fig. 32. Upward displacement of the femoral head pit (red arrow) during adduction in the supporting hip joint.
LCF - tensioned.

Fig. 33. Downward displacement of the femoral head pit (red arrow) during abduction in the supporting hip joint.

LCF - relaxed.


XV. Tensioned LCF is a synergist of the abductor muscle group of the hip joint.

Fig. 34. Lever model of the hip joint with an LCF analog.

XVI. Pelvic tilt and adduction in the hip joint without ligaments.

Fig. 35. Modeling the single-support phase of the gait cycle during normal walking, on a dynamic model of the hip joint with an analog of the m. gluteus medius (without ligament analogs).

The force of the m. gluteus medius analog increases.

XVII. Pelvic tilt and adduction in the hip joint with only LCF.

Fig. 36. Modeling single-leg support during walking on a dynamic model of the hip joint with an LCF analog and an analog of the m. gluteus medius.

The force of the m. gluteus medius analog decreases.

XVIII. Pelvic tilt and adduction in the hip joint with the presence of external ligaments and LCF.

Fig. 37. Modeling single-leg support during walking on a dynamic model of the hip joint with an LCF analog, analogs of external ligaments, and an analog of the m. gluteus medius.

The force of the m. gluteus medius analog decreases, and pelvic stability increases.

IXX. Experiments on a dynamic model of the hip joint.

Modeling the single-leg support phase during normal walking.

Watch the video: Supplement 2 Gluteus Medius & LCF

It has been experimentally confirmed that LCF acts as a thigh adduction limiter, transforms the hip joint into a class three lever, prevents dislocation, suspends the pelvis, and acts as a synergist to the abductor muscle group.


XX. Modeling on a single leg pose with maximum pelvic tilt and thigh adduction.

Fig. 38. Dynamic model of the hip joint with analogs of ligaments and muscles.

The greatest pelvic stability is achieved when all hip joint ligaments are tensioned.

XXI. Modeling on a single leg pose without pelvic tilt.

Fig. 39. Dynamic model of the hip joint with analogs of ligaments and muscles.

Pelvic stability is achieved only by the force of the m. gluteus medius and the m. rectus femoris.

XXII. Modeling on a single leg pose with optimal pelvic tilt and hip adduction.

Fig. 40 Dynamic model of the hip joint with analogs of ligaments and muscles.

Pelvic stability is achieved through the tension of LCF and the force of the m. gluteus medius.

XXIII. When activating the abductor muscle group, with the tension of LCF and external ligaments, pressure on the femoral head is evenly distributed.

Normally, pressure on the upper sector of the femoral head is approximately equivalent to body weight.

Fig. 41. Distribution of forces in the hip joint when standing on one leg, as well as in the pose of an ancient statue, and in the single-leg support phase during normal walking (with pelvic tilt and thigh adduction).

XXIV. Moment rule for the supporting hip joint when standing on one leg, as well as in the pose of an ancient statue, and in the single-leg support phase during normal walking (considering only the reaction forces of ligaments, abductor, and adductor muscles).

Fig. 42. Moment rule for the supporting hip joint when standing on one leg, as well as in the pose of an ancient statue, and in the single-leg support phase during normal walking.

CONCLUSION

LCF is an essential component of the hip joint. Pelvic tilt and thigh adduction in the supporting hip joint when standing on one leg, in the pose of an ancient statue, as well as in the single-leg support phase during normal walking, provide tension to LCF. This element supports the pelvis as a suspension, unloads the abductor muscle group of the hip joint, and contributes to the even distribution of pressure on the femoral head.

LIMITATIONS

We acknowledge that this study has limitations inherent to experimental research on mechanical models. Additional research is needed to refine the pressure distribution on the femoral head for the supporting hip joint when standing on one leg, in the pose of an ancient statue, and in the single-leg support phase during normal walking.

References

Arkhipov SV, Skvortsov DV. Ligamentum capitis femoris: first written mentions. Muscles, Ligaments and Tendons Journal. 2019, 9(2)156–64.

Bombelli R. Structure and function in normal and abnormal hip: how to rescue mechanically jeopardized hip. 3-rd. ed. Berlin, Heidelberg, New York: Springer-Verlag, 1993.

Cheselden W. Osteographia, or the anatomy of the bones. London: W. Bowyer [?], 1733.

Gray H. Anatomy, descriptive and surgical / by Henry Gray. The drawings by H. V. Carter. With additional drawings in the second and later editions by Dr. Westmacott. The dissections jointly by the author and Dr. Carter. With an introduction on general anatomy and development by T. Holmes. Philadelphia: H.C. Lea, 1870.

Harcourt G. Andreas Vesalius and the anatomy of antique sculpture. Representations. 1987;17:28–61.

Kapandji AI. The physiology of the joints: Lower limb. Vol. 2. New Delhi: Elsevier Exclusive, 2009.

Kornell M. (2011, August 22) Accuracy and Elegance in Cheselden’s Osteographia (1733). Retrieved September 20, 2019. from publicdomainreview.org 

Kühn CG (Ed). Galeni opera omnia. In Hippocratis librum de articulis et Galeni in eum commentarii IV. T. XVIIIA. Leipzig, 1829.

Littre E. Oeuvres complètes d'Hippocrate, traduction nouvelle avec le texte grec en regard, collationné sur les manuscrits et toutes les éditions; accompagnée d'une introduction, de commentaires médicaux, de variantes et de notes philologiques; Suivie d'une table générale des matières, Par É.Littré. Tome quatrieme. Paris: J.B.Baillière 1844.

Paul JP. The Biomechanics of the hip-joints and its Clinical Relevance. Proceedings of the Royal Society of Medicine. 1966;59:943–8.

Pauwels F. Biomechanics of the normal and diseased hip: Theoretical foundation, technique and results of treatment. An atlas. Berlin: Springer-Verlag, 1976.

René C. (Ed.) Operum Hippocratis Coi, et Galeni Pergameni, medicorum omnium principum, T. III. Paris, 1638.

Vesale A. Andreae Vesalii bruxellensis, scholae medicorum Patauinae professoris, de Humani corporis fabrica. Libri septem. Basileae: J.Oporinum, 1543.

Wenger DR, Miyanji F, Mahar A, Oka R. The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children's hip surgery. J Pediatr Orthop. 2007;27(4) 408–10.

Архипов С.В. Дети человеческие: истоки библейских преданий в обозрении врача. Обновляемое электронное эссе, снабженное ссылками на интерактивный материал. Йоэнсуу: Издание Автора, 2023; версия 1.0.0.

Архипов СВ. Роль связки головки бедренной кости в патогенезе коксартроза: дис. … канд. мед. наук. М., 2013.

Селье Г. Очерки об адаптационном синдроме. Москва: Медгиз, 1960; [transl. Selye H. The story of the adaptation syndrome. (Told in the form of informal, illustrated lectures). Montreal: Acta Inc., 1952.]

Янсон ХА. Биомеханика нижней конечности человека. Рига: Зинатне, 1975.

.                                                                     

In translating to English, the author is assisted by ChatGPT (version 3.5) and the Google Translate service.

If you notice an error, please let us know!

The first version:

Arkhipov SV. New Biomechanics of the Hip Joints: Ligamentum Teres as a Functional Relation. Part I. Pictorial Essay. Ligamentum Teres – Ligamentum Incognitum. 2019, September 22:1–25. DOI: 10.13140/RG.2.2.11991.62881 [researchgate.net , ligteres.com]

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, abductor muscle group, hip joint, model, biomechanics, walk, gait cycle, gluteus medius, single-legged stance

BLOG CONTENT

BIOMECHANICS AND MORPHOMECHANICS

Comments

Popular posts from this blog

THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS

  Translation of the article:   Архипов СВ. Новая техника проксимального крепления при реконструкции ligamentum capitis femoris: Дары волхвов ортопедическим хирургам. The text in Russian is available at the following link:  2026АрхиповСВ .  A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction: The Gifts of the Magi for Orthopedic Surgeons S.V. Arkhipov, Independent Researcher, Joensuu, Finland     CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Technique [v]   Discussion [vi]   Conclusion [vii]   Appendix [viii]   References [ix]   Structured Abstract [x]   Additional material [i]   Abstract An experimental technique for reconstruction of the ligamentum capitis femoris (ligamentum teres femoris) is described. The proposed method involves creating two portions of the ligament analog: a pubic portion and an ischial portion. Fixation of thes...

2018YoussefAO

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Youssef AO. Medial approach open reduction with ligamentum teres partial excision and plication for the management of congenital hip dislocation (2018). The article describes a method for transposition of the proximal attachment of the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2018YoussefAO . [ii]   Original text Abstract Because of the known tendency for early redislocation following open reduction, we developed surgical methods for shortening the ligamentum teres to improve immediate postoperative stability when performing medial approach open reduction (MAOR) for the management of developmental dysplasia of the hip. Between 2004 and 2014, 32 patients w...

LCF in 2025 (December)

  LCF in 2025 ( December)   (Quotes from articles and books published in  December  2025 mentioning the ligamentum capitis femoris)   Sarassa, C., Aristizabal, S., Mejía, R., García, J. J., Quintero, D., & Herrera, A. M. (2025). Intraosseous Tunneling and Ligamentum Teres Ligamentodesis “Teretization” to Enhance Stability in Congenital Hip Dislocation Surgery: Surgical Technique and Mid-Term Outcomes. Journal of Pediatric Orthopaedics , 10-1097.   [i]      journals.lww.com   Kampouridis, P., Svorligkou, G., Spassov, N., & Böhme, M. (2025). Postcranial anatomy of the Late Miocene Eurasian hornless rhinocerotid Chilotherium. PLoS One , 20 (12), e0336590.     [ii]      journals.plos.org   Burdette, T. N., Hsiou, C. L., McDonough, S. P., Pell, S., Ayers, J., Divers, T. J., & Delvescovo, B. Sidewinder syndrome associated with complete rupture of the ligamentum capitis ossis femoris in a horse. Eq...

11th-15th Century

   11th-15th Century Catalog of archived publications of the specified period        11th century 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 1012-1024Avicenna   The author writes about the localization and  variant of the pathology LCF, leading to hip dislocation. 1039-1065Giorgi Mtatsmindeli   The translator mentions the LCF damage, and notes its presence in animals. 12 th century 1120-1140Judah Halevi   The author mentions LCF (גיד) of mammals. 1176-1178(a)Rambam  The author mentions the pathology of LCF (גיד) in humans and points out the presence of this structure in animals. 1176-1178(b)Rambam  The author writes about the localization of LCF (גיד) ) and distinguishes it from a tendon,   blood vessel or nerve. 1185-1235David Kimchi  The author writes about the localization, purpose, and injury of the LCF (גיד), and also talks abo...

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

Catalog. Classifications of LCF Pathology

  The classifications are intended to systematize of ligamentum capitis femoris pathology and assist in the development of general approaches to its description, registration, analysis and treatment.   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, histology, pathological anatomy, pathology, trauma INTRODUCTION In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. The development of arthroscopic surgery has made it possible to identify various, previously undescribed types of LCF pathology, which prompted the development of various modern classifications based on intraoperative observations. Analysis of literature data and our own morphological observations allowed us to propose a General Classification of the Ligamentum Teres Pathology, which has the form of a collection of classifiers, as well as a Classification of Functions of the Ligamentum Teres. The ...

1834MitchellE_KnoxR

Description and drawings of the proximal attachment and blood supply of the ligamentum capitis femoris (LCF) from book Mitchell E, Knox R. Engravings of the ligaments (1834 ). PLATE VI   PLATE VI. … 49. The round ligament of the hip-joint, which arises from the sinus in the bottom of the acetabulum and descends into the head of the femur. 50. A portion of it which is thinner and membranous. 51. Portion of a ligament which arises from the outer surface of the ischiatic cavity and surrounds its neck as far as the notch of the acetabulum; there however it makes its way into the acetabulum, passing under the arch of the cotyloid ligament. 52. Branch of the obturator artery. 53.   Two twigs which penetrate into the cotyloid cavity along with the ligament 51, to mingle with the round ligament.   PLATE VII PLATE VII. Fig. 1. … 19, 19. Remarkable glands, which are concealed in the sinus of the acetabulum. 20. Origin of the exterior ligament which arises fr...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

2008DoddsMK_McCormackD

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Dodds MK et al . Transarticular stabilization of the immature femoral head: assessment of a novel surgical approach to the dislocating pediatric hip in a porcine model (2008). The article describes an experiment of reconstruction of ligamentum capitis femoris (LCF) in pigs with the formation of a femoral tunnel. The text in Russian is available at the following link:  2008DoddsMK_McCormackD . [ii]   Original text Abstract Background: Acetabular dysplasia and hip instability are common in neuromuscular diseases such as spina bifida and cerebral palsy due to deranged muscle function around the hip. Occasionally in developmental dysplasia of the hip, persistent instability may be difficult to manage by standard treatments. It i...