Skip to main content

2019(b)ArkhipovSV_SkvortsovDV

 

Ligamentum capitis femoris a pilot an experimental study 

S.V. Arkhipov, N.V. Zagorodny, D.V. Skvortsov 

Abstract

Ligamentum capitis femoris (syn. ligamentum teres, ligament of head of femur), connecting the acetabulum and the head of femur. This is one of the least studied anatomical elements of the human body. In order to clarify the functions of the ligamentum capitis femoris, external ligaments and abductor muscle group, we constructed a dynamic model of the hip joint. It was established that this anatomical element is involved in constraining the hip joint adduction and may locking the hip joint in the frontal plane, turning it into an analogue of a third-class lever. When the ligamentum capitis femoris is stretched and the abductor muscle group is tension, a load equal to twice the body weight is evenly distributed between the upper and lower hemispheres of the head of femur. The ligamentum capitis femoris function increases the steadiness of the orthostatic postures and unloads the muscle apparatus of the hip joint. 

Introduction

Ligamentum capitis femoris (syn. ligamentum teres, ligament of head of femur) is known for about 2500 years. The first description of the ligamentum capitis femoris in the medical text is given by Hippocrates of Kos in the treatise «Instruments of Reductions» (V-IV century BCE) [1]. In the Greek edition of the manuscript, ligamentum capitis femoris is called νεῦρον [2], while in the Latin version it is referred to as neruus [3]. According to our hypothesis, the first in the history of mankind to mention a ligamentum capitis femoris, is contained in the ancient literary monument of Torah (XII-II century BCE) [4]. One of the early mentions is contained in the works by Heraclides of Tarentum (III–II century BCE) [5], Hegetor (II century BCE) [6], Apollonios of Kition (I century BCE) [7] and Galen of Pergamon (II-III century ACE) [5]. However, it remains one of the least studied anatomical structures of the human body, indeed, a ligamentum incognitum.

The ligamentum capitis femoris is located in the hip joint, in a special osteochondrous cavity composed of the acetabular notch and cotyloid fossa on one side and the articular surface of the head of femur on the other side [8]. The normal ligamentum capitis femoris length is about 25 mm [9], a mean ultimate failure load of 204 N [10], and maybe more about 882 N [11]. Histologically, the basis of the ligamentum capitis femoris is composed of collagen fiber bundles and is surrounded by a layer of investing synovium composed of a single layer of cuboidal cells [12, 13]. The ligamentum capitis femoris had six anchoring points on the acetabulum and one anchoring point on the femur [14].

The biomechanical function of the ligamentum capitis femoris has not been unambiguously determined [15] and is subject to controversy. Tonkov wrote that the ligamentum capitis femoris function “… is not perfectly clear; in any case, its mechanical significance is not so great” [9]. However, according to Neverov and Shil’nikov, it plays an important role in the hip joint biomechanics [16], while Vorob’ev claimed that its “biomechanical function” is of importance only under certain conditions [17]. On the other hand, Pirogov compared the ligamentum capitis femoris to “a steel spring on which the pelvis is suspended from the caput” [18]. Gerdy and Savory [19] advanced a similar opinion, the former author noting that the ligamentum capitis femoris is exerted in the erect posture. Ivanitskii, when touching on the role of the ligamentum capitis femoris in maintaining an erect posture, wrote [20], “in an asymmetrical posture, with the pelvis tilted, the ligamentum capitis femoris on the side of the supporting, usually straightened, leg is stretched to reinforce the hip joint” [20].

In hip joint biomechanics, it is commonly accepted that maintaining an one-support orthostatic posture in the frontal plane depends only on muscles [21–25]. The ligamentum capitis femoris is not mentioned as a functional component of the hip joint, and its mechanical reaction is not considered in calculating the head of femur loading.

The purpose of this study was to clarify the function of the ligamentum capitis femoris and its role in maintaining one-support orthostatic posture. 

Materials and Methods

In order to clarify the functions of the ligamentum capitis femoris and abductor muscle group, we constructed a dynamic model of the hip joint (Figure 1) [26]. We used a Thompson unipolar endoprosthesis fixed on a base, named as a femoral basal element. In accordance with the diameter of the head of endoprosthesis (head of femur analogue), a metal model of the acetabulum was made in the form of a thick-walled spherical shell having a shaped recess that simulated the acetabular fossa and notch. A profiled plane simulated pelvis and a plate for suspending a load, a 1- to 3-kg dumbbell, were attached from the outside. The model contained an ligamentum capitis femoris analogue made from a metal cord 2 mm in diameter and external ligaments analogues (iliofemoral, ischiofemoral, and pubofemorale ligaments) made from a metal cord 1.5 mm in diameter. One end of ligamentum capitis femoris analogue was tightly fixed to an opening made in the shaped recess of the acetabulum model, and the other, to the head of endoprosthesis. Both parts of the model were also linked to a dynamometer, whose spring simulated the function of the abductor muscle group; oil lubricated the friction node. The properties of the model were studied both in the absence of the ligamentum capitis femoris analogue, external ligaments analogues, and abductor muscle group analogues and in their presence in different combinations. In some experiments, we changed the length of the abductor muscle group analogue, thereby modeling different degrees of its tension. We determined the possible rotational and translational movements in the hinge of the model, their range, and constraints. We modeled equilibrium conditions for the pelvis moving in the frontal plane in the unstrained and strained types of one-support orthostatic posture.

Figure 1Dynamic hip joint model (Application RU2009124926 A, June 29, 2009. 2011.) 

 
Results and Discussion

Experiments with a dynamic model of the hip joint showed that the ligamentum capitis femoris imposes constraints on the hip joint adduction by limiting abduction, pronation and supination, and translational outward and upward head of femur movements, and also prevents dislocation. Stretching of the ligamentum capitis femoris is brought about by adducting the hip and inclining the pelvis to the nonsupporting side, the hip joint locking in the frontal plane, becoming an analogue of a third-class lever. In the absence of abductor muscle group tension, the resultant force acting on the hip joint is directed upwards, loading only the inner lower part of the head of femur. Our data confirm that straining of the abductor muscle group increases abduction of the hip joint. In cooperation with antagonists, it is capable of locking the hip joint in the frontal plane in an arbitrary position. If the abductor muscle group is exerted without stretching of the ligamentum capitis femoris, the resultant force acting on the head of femur is directed upwards, loading only the inner upper part of the head of femur. The abductor muscle group cooperates with the ligamentum capitis femoris in constraining adduction. Its tightening can decrease the ligamentum capitis femoris stretching, and, vice versa, stretched ligamentum capitis femoris decreases the load on the abductor muscle group. 

It was established experimentally that the ligamentum capitis femoris is not subjected to stretching in a strained one-support orthostatic posture, while the abductor muscle group and its antagonists locking the hip joint movements in the frontal plane. Here, the hip joint is an analogue of a first-class lever, which means loading of the upper hemisphere of the head of femur. If we assume that the lever of the body weight exceeds threefold the lever of the abductor muscle group effort [25], then the force produced by the abductor muscle group will be three times greater than the body weight. Then, the resultant downward force acting on the head of femur is four times greater than the body weight.

Analysis of the experimental data and results of clinical examinations indicates that, in the unstrained one-support orthostatic posture, hip adduction and tilting of the pelvis toward nonsupporting side are constrained including by stretching ligamentum capitis femoris, which agrees with the opinions of other authors [20, 27]. The pelvis, as stated by Pirogov, is “suspended” from the ligamentum capitis femoris [18]. The combination of stretching of the ligamentum capitis femoris and tension of the abductor muscle group is optimal in terms of loading all elements of hip joint and maintaining the steadiness of the erect posture in the frontal plane.

Given this type of a one-support orthostatic posture, both the stretched ligamentum capitis femoris and the tension abductor muscle group deviate from the vertical. The horizontal components of the reaction forces of the ligamentum capitis femoris and the abductor muscle group are summed, resulting in a horizontal force that uniformly presses the acetabulum to the head of femur. The mean angular deviation from the vertical of the force produced by the abductor muscle group is 21°[22]; the angular deviation of the ligamentum capitis femoris is, according to our data, about 50°. The calculations show that the amount of pressing the pelvis to the head of femur is approximately equal to twice the weight of the body (1.96P), with the horizontal component of the ligamentum capitis femoris reaction force equal to 1.6P and the horizontal component of the abductor muscle group reaction force equal to 0.36P. The loads on the upper and lower head of femur hemispheres are approximately equivalent to the body weight without taking into account the mass of the supporting leg.

In an unstrained one-support orthostatic posture (pose of an antique statue) with little or no participation of the abductor muscle, the movement of the hip joint in the frontal plane is that of a third-class lever analogue. If we assume that the lever of the body weight exceeds threefold the lever of the ligamentum capitis femoris reaction force, the ligamentum capitis femoris reaction force is equal to three times the weight of the body. The resultant upward force acting on the lower head of femur is equal to two times the weight of the body. 

Conclusion

1. We established experimentally that the ligamentum capitis femoris constrains adduction and lateral and cranial displacement of the head of femur and can locking the hip joint in the frontal plane, which is equivalent to the transformation of this structure into an analogue of a third-class lever.

2. In the unstrained type of the one-support orthostatic posture, when the frontal locking of the hip joint is carried out, including through the ligamentum capitis femoris, the group of abductor muscle can be unloaded. In this case, the resultant load on the head of femur, being approximately equal to twice the body weight. This load is evenly distributed between the upper and lower hemispheres the head of femur, if a commensurate tension of the abductor muscle group and stretching of the ligamentum capitis femoris is combined.

3. Ligamentum capitis femoris stretching does not occur in a strained type of the one-support orthostatic position. The hip joint is fix in the frontal plane by tension of the abductor muscle group and its antagonists, the resultant load on the head of femur having a downward direction, acts on the upper hemisphere and being approximately equal to four times the body weight.

Conflict of Interest

None declared. 

References

1. Adams F (1849). Hippocrates: The genuine works of Hippocrates; translated from the Greek, with a preliminary discourse and annotations. Vol. 1, 2. Sydenham society, London.

2. Littre E (1844) Oeuvres complètes d'Hippocrate, traduction nouvelle avec le texte grec en regard, collationné sur les manuscrits et toutes les éditions; accompagnée d'une introduction, de commentaires médicaux, de variantes et de notes philologiques; Suivie d'une table générale des matières, Par É.Littré. Tome quatrieme. J.B.Baillière, Paris.

3. Cornarius I (1564). Hippocratis: Coi medicorum, omnium facile principis Opera quae extant omnia, Jano Cornario Medico Physico interprete. Apud Haeredes Iacobi Iunctae, Lugduni.

4. Archipov SV, Skvortsov DV (2019) Ligamentum capitis femoris: first written mentions. MLTJ 9(2): 156–164.

5. Galenus C (1597) Galeni librorum quinta classis eam medicinae partem, que ad Pharmaciam spectat, exponens, simplicium medicamentoru, substitutorum, purgantium, antidotorum, componendorum tam per locos quam per genera medicamentorum, ponderum denique, ac mensurarum doctrinam comprehendit: Septima hac nostra editione, … Librorum numerus proximo folio continetur. Apud Iuntas, Veneijs.

6. Cocchi A (1745) Dell'anatomia. Discorso d'Antonio Cocchi Мugellano. Nella stamperia di Gio Batista Zannoni, Firenze.

7. Kollesch J, Kudlien F (1965) Apollonii Citiensis In Hippocratis De articulis commentarius, ediderunt J.Kollesch et F.Kudlien, in linguam Germanicam transtulerunt J.Kollesch et D.Nickel, Corpus Medicorum Graecorum XI 1, 1. Akademie-Verlag, Berlin.

8. Arkhipov SV (2013) Rol svyazki golovki bedrennoy kosti v patogeneze koksartroza. Cand. Sci. (Med.) Dissertation. Peoples’ Friendship University of Russia. Moscow.

9. Tonkov V (1946) Anatomiya cheloveka: Obshchaya chast': Sistema organov dvizheniya. Medgiz, Leningrad.

10. Philippon MJ, Rasmussen MT, Turnbull TL, Trindade CAC, Hamming MG et al. (2014) Structural properties of the native ligamentum teres. Orthop J Sports Med 2: 2325967114561962.

11. Wenger D, Miyanji F, Mahar A, Oka R (2007) The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children’s hip surgery. J Pediatr Orthop 27: 408–410.

12. Dehao BW, Bing TK, Young JLS (2015) Understanding the ligamentum teres of the hip: a histological study. Acta Ortop Bras 23: 29–33.

13. O’Donnell JM, Devitt B M, Arora M (2018) The role of the ligamentum teres in the adult hip: redundant or relevant? A review. J Hip Preserv Surg 5(1): 15-22.

14. Brady AW, Mikula JD, Chahla J, Slette E, Trindade C. et al. (2016) Anatomic analysis of the native ligamentum teres. J Hip Preserv Surg 3(suppl_1).

15. Byrd JW (1998) Operative Hip Arthroscopy. Thieme, New York.

16. Neverov VA, Shil’nikov VA (1993) Sposob fornirovaniya iskusstvennoj golovki bedra pri endoprotezirovanii. Vestn Khir 7-12: 81–83.

17. Vorob’ev NA (1962) Svyazka golovki bedra i yeye prakticheskoye znachenuye. In Voprosy travmatologii i ortopedii. Kiev, 157–174.

18. Yurchak VF, Yevtushenko VA (1972) Morphological Features of the Fetal Hip Joint in the Second Half of Pregnancy. Ortoped Travmatol 1: 26–32.

19. Nikolaev LN (1922) The Role of the Orbicular Ligament in the Hip Joint. Med Zh 3(1-2-3): 10–12.

20. Ivanitskii MF (1985) Anatomiya cheloveka s osnovami dinamicheskoy i sportivnoy morfologii: Uchebnik dlya institutov fizicheskoy kultury. Fizkultura i Sport, Leningrad.

21. Belen’kij VE (1962) Some Problems in Hip Joint Biomechanics. Cand. Sci. (Med.) Dissertation, Moscow.

22. Shapovalov VM, Shatrov NP, Tikhilolv RM, Shtilman NV (1998) The Load Pattern in the Hip Joint in Acetabular Dysplasia and Caput Femoris Osteonecrosis. Travmatol Ortoped Ross 3: 22–26.

23. Yanson HA (1975) Biomekhanika nizhnei konechnosti cheloveka. Zinatne, Riga.

24. Bombelli R (1993) Structure and Function in Normal and Abnormal Hip: How to Rescue Mechanically Jeopardized Hip. Springer, Berlin.

25. Pauwels F (1965) Gesammelte Abhandlung zur funktionellen Anatomie des Bewegungsapparates. Springer, Berlin.

26. Arkhipov SV (2009) Dynamic model of the hip joint. Positive decision to grant a patent of the Russian Federation on the application for the invention №2009124926A.

27. Vorob’ev VP (1932) Anatomiya cheloveka: Rukovodstvo i atlas dlya studentov i vrachej. Vol. 1. Medgiz, Moscow. 

Authors & Affiliations

1. Sergey V. Arkhipov (Ph.D.)

2. Nikolay V. Zagorodny (Prof., Ph.D.)

3. Dmitry V. Skvortsov (Prof., Ph.D.)

Corresponding author: Sergey Vasilyevich Arkhipov

Organization: N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, Russia

External links

Arkhipov SV, Zagorodny NV, Skvortsov DV. Ligamentum capitis femoris a pilot an experimental study. Am J Biomed Sci & Res. 2019;5(2)92-4. DOI:10.34297/AJBSR.2019.05.000884 [researchgate.net(PDF)  , biomedgrid.com]

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, abductor muscle group, hip joint, model, biomechanics 

                                                                     .

NB! The first publication did not contain an image of the model.

BLOG CONTENT

EXPERIMENTS AND OBSERVATIONS

Comments

Popular posts from this blog

NEWS

  New publications of our resource ( section started June 04, 2024 ) January 11, 2025 Acetabular Canal.  Part 1.   This article describes the space where the ligamentum capitis femoris (LCF) attaches and functions. See also  Part 2  and  Part 3 .  January 10, 2025 1877MorrisH An excerpt from an article noting that the LCF is stretched during flexion, adduction, external rotation, and is always torn during hip dislocations. January 8, 2025 1877BrookeC  Report and discussion on Henry Morris's paper Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint,  with  mentioning the role played by LCF.   January 7, 2025 Tweet of January 7, 2025   1898AshhurstJ The author discusses the function of the LCF as a supporting element of the body, its role in the development of deformity of the hip joint, reducing pressure and stress in the femoral head. January 4, 2025 2024Migliorin...

LCF in 2024 (December)

Publications about the LCF 2024  ( Dece mber)      Kneipp, M. L. A., Sousa, L. N., Cota, L. O., Malacarne, B. D., Winter, I. C., Santana, C. H., ... & Carvalho, A. M. (2024). Bilateral coxofemoral dysplasia in a Mangalarga Marchador foal. Journal of Equine Veterinary Science , 105253. [i]   sciencedirect.com   Siddiq, B. S., Gillinov, S. M., Cherian, N. J., & Martin, S. D. (2024). Arthroscopic Reconstruction of the Acetabular Labrum Using an Autograft Hip Capsule. JBJS Essential Surgical Techniques , 14 (4), e23.  [ii]   pmc.ncbi.nlm.nih.gov   Kraft, D. B., Delahay, J. N., & Murray, R. S. (2024). Pediatric Orthopedics. In  Essentials of Orthopedic Surgery  (pp. 139-185). Cham: Springer Nature Switzerland.  [iii] link.springer.com   Gebriel, M. E., Farid, M., Mostafa, A., Shaker, N., Abouelela, Y., & Noor, N. (2024). The Surgical Anatomy of Canine Coxofemoral Joint and Innovative Educational...

1917TrevesF_MackenzieC

  Fragments from the book Treves F, Keith A, Mackenzie C. Surgical Applied Anatomy, 7th ed. (1917). The author discusses the strength and significance of the ligamentum capitis femoris (LCF) and its changes in hip dislocations and dysplasia.   Quote pp. 542-543 3. THE HIP-JOINT … The manner in which the various movements at the hip are limited may be briefly expressed as follows: The limit of every natural movement is fixed by the extensibility of the muscles which surround a joint. That is readily seen at the hip-joint, for when the knee is extended, and the hamstring muscles thus tightened, flexion at the hip is limited long before the ligaments become tense. Ligaments only come into play when the muscular defence of the joint breaks down. Flexion, when the knee is bent, is limited by the contact of the soft parts of the groin. Extension, by the ilio-psoas, rectus femoris, and the ilio-femoral or Y -ligament. Abduction, by the adductor mass of muscles and the pubo-capsular l...

1857RichetA

  Fragments of the book Richet A. Traité pratique d' Anatomie medico-chirurgicale (1857) are devoted to the anatomy of the ligamentum capitis femoris (LCF). The author believes that the vessels passing through the LCF are sufficient to supply blood to the femoral head. The text is prepared for machine translation using a service built into the blog from Google or your web browser. In some cases, we have added links to quotations about LCF available on our resource, as well as to publications posted on the Internet.   Quote pp. 922-923 Articulation coxo-femorale. Cette articulation, qui appartient à la classe des énarthroses dont elle représente le type, a été l'objet de travaux importants de la part des physiologistes et des chirurgiens, et c'est aux frères Weber et à M. Malgaigne, plutôt qu'aux anatomistes purs, qu'on doit d'avoir mis en lumière un grand nombre des faits qui vont suivre et qui éclairent des questions pathologiques avant eux restées insol...

THE DOCTRINE OF LCF

  THE DOCTRINE OF  ligamentum capitis femoris:   An instrument of knowledge and innovation. Definition: A set of theoretical provisions on all aspects of knowledge about the anatomical element ligamentum capitis femoris (LCF). 1. Structure of the Doctrine of LCF 2.  Practical Application of the Doctrine of LCF : 2.1. Diagnostics 2.1. Prevention   2.3. Prognosis 2.4. Pathology 2.5. Veterinary   2.6. Professions     2.7. Products     2.8. Surgery   3. Theory of LCF Mechanics    4. The Base of the Doctrine of LCF 5. Stairway to the Past or History of the Doctrine of LCF 6. Ultimate Depth of Researches   7. Appendices 7.1. Acceptable Synonyms      Structure of the Doctrine of  ligamentum  capitis  femoris .       E     a     r                   T                   ...

LCF in 2024 (November)

Publications about the LCF 2024  (November) .   Mohammed, C., Kong, R., Kuruba, V., Rai, V., & Munazzam, S. W. (2024). Outcomes and complications of hip arthroscopy for femoroacetabular impingement syndrome: A narrative review. Journal of Clinical Orthopaedics and Trauma , 102797. [i]   journal-cot.com   Shah, M. Q. A., Kiani, R. B., Ahmad, A., Malik, H. A., Rehman, J. U., & Anwar, Z. (2024). Children with Developmental Dysplasia of Hip-Our Experience of Outcome at a Tertiary Care Centre. Pakistan Armed Forces Medical Journal , 74 (5 ), 1236.   [ii]    scholar.google.com   Graf, R. Sonography of the Infant’s Hip: Principles, implementation and therapeutic consequences . Springer Nature. 2024.   [iii]    books.google   Sáenz, J. F. C., Carrera, E. T., Gutiérrez, R. A., & De La Ossa, L. (2024). Capsular Traction-Assisted Hip Arthroscopy: An Alternative to T-Capsulotomy for Osteochondroplasty. Arthros...

COPYRIGHT

  If not stated otherwise, all content on this blog, including text, graphics, logos, button icons, images, photographs, tables, diagrams, charts, videos, is the property of the resource administration, and is protected by copyright laws. The compilation of blog content is also the exclusive property of its administration and is protected by relevant legislation. Unless expressly specified and written permission is granted by the blog administration, any use of its materials for commercial purposes or posting on other platforms is prohibited. If you believe that the text, images, or videos published in the blog violate your copyrights, we kindly ask you to send us a notification requesting the removal of the material, accompanied by a reasonable explanation. Please submit a notice of copyright infringement that you have identified in writing to the following email address: archipovlcfbooks&gmail.com If you believe that the information posted on the blog violates the rig...

1753TarinP

  Fragments from the book Tarin P. Ostéo-graphie (1753). The author notes the localization of ligamentum capitis femoris (LCF) and uses synonyms: ligament rond, ligamentum teres capitis femoris. The text is prepared for machine translation using a service built into the blog from Google or your web browser. Quote p. 24 Les Ligamens de l'extrémité inférieure sont, 1°. la Membrane capsulaire, &c. de la cavité cotyloïde, le Ligament rond, l'Appareil ligamenteux propre à cette cavité; le Ligament transveríal interne de son bord, le transversal externe, les deux Ligamens glanduleux; … Quote p. 54. Illæ tres offeæ portiones simul unitæ Cavitatem cotyloïdeam q.t. a. constituunt, in qua occurrit Foveols h. glandulas synoviales articulationis excipiens, cuique sesc inserit ligamentum teres capitis femoris, &c. Vid. t. u. v. TAB. I. II. III. External links Tarin P. Ostéo-graphie, ou Description des os de l'adulte, du foetus, &c. Precedée d'une introduction a l'etu...

1877BrookeC

  Report by Brooke C. and discussion of the article Dislocations of the Thigh: their mode of occurrence as indicated by experiments, and the Anatomy of the Hip-joint. By Henry Morris. M.A., M.B. (1877). In the discussion, Dr. Barwell remarked that: «He agreed with Mr. Morris in regarding the ligamentum teres as of little importance in the prevention of dislocation; it probably did little more than protect the vessels passing to the head of the bone. He saw a case some years ago, in which there was congenital absence of the ligamentum teres; but he had no reason for believing that the man was more liable to dislocation of the femur than other persons.» The author of the article, Henry Morris, suggested that Malgaigne «... did not attach much importance to the ligamentum teres; and believed that it had no power to hold the bone in its place.».   ROYAL MEDICAL AND CHIRURGICAL SOCIETY. TUESDAY, FEBRUARY I3TH, 1877. CHARLES BROOKE, F.R.C.S., F.R.S., Vice-President, in the Chair. D...

398-405Jerome of Stridon

  Fragments of the Book of Genesis translated by Jerome of Stridon (398-405). The Latin text contains mentioned to ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 398-405Jerome of Stridon [Rus]. Quote [Lat] Genesis 32:25,32 25. Qui cùm videret quòd eum sperare non posset, tetigit neruum femoris eius, & statim emarcuit. (original source: 1572 MontanoBA , p. 110) 32. Quá ob causam non comedunt neruú filij Israel, qui emarcuit in femore Iacob, vsq; in præsentem diem, eo quòd tetigerit neruú femoris eius, & obstupuerit. (original source: 1572 MontanoBA , p. 112) Translation [Eng] Genesis 32:25,32 25. But when he saw that he could not prevail against him, he touched the sinew of his thigh, and immediately it withered. (original source: 1572 MontanoBA , p. 110; our translation) 32. For this reason, the children of Israel do not eat the sinew that withered in Jacob's thigh to this day, because he touched the sinew of his thigh and dam...