Skip to main content

2019(b)ArkhipovSV_SkvortsovDV

 

Ligamentum capitis femoris a pilot an experimental study 

S.V. Arkhipov, N.V. Zagorodny, D.V. Skvortsov 

Abstract

Ligamentum capitis femoris (syn. ligamentum teres, ligament of head of femur), connecting the acetabulum and the head of femur. This is one of the least studied anatomical elements of the human body. In order to clarify the functions of the ligamentum capitis femoris, external ligaments and abductor muscle group, we constructed a dynamic model of the hip joint. It was established that this anatomical element is involved in constraining the hip joint adduction and may locking the hip joint in the frontal plane, turning it into an analogue of a third-class lever. When the ligamentum capitis femoris is stretched and the abductor muscle group is tension, a load equal to twice the body weight is evenly distributed between the upper and lower hemispheres of the head of femur. The ligamentum capitis femoris function increases the steadiness of the orthostatic postures and unloads the muscle apparatus of the hip joint. 

Introduction

Ligamentum capitis femoris (syn. ligamentum teres, ligament of head of femur) is known for about 2500 years. The first description of the ligamentum capitis femoris in the medical text is given by Hippocrates of Kos in the treatise «Instruments of Reductions» (V-IV century BCE) [1]. In the Greek edition of the manuscript, ligamentum capitis femoris is called νεῦρον [2], while in the Latin version it is referred to as neruus [3]. According to our hypothesis, the first in the history of mankind to mention a ligamentum capitis femoris, is contained in the ancient literary monument of Torah (XII-II century BCE) [4]. One of the early mentions is contained in the works by Heraclides of Tarentum (III–II century BCE) [5], Hegetor (II century BCE) [6], Apollonios of Kition (I century BCE) [7] and Galen of Pergamon (II-III century ACE) [5]. However, it remains one of the least studied anatomical structures of the human body, indeed, a ligamentum incognitum.

The ligamentum capitis femoris is located in the hip joint, in a special osteochondrous cavity composed of the acetabular notch and cotyloid fossa on one side and the articular surface of the head of femur on the other side [8]. The normal ligamentum capitis femoris length is about 25 mm [9], a mean ultimate failure load of 204 N [10], and maybe more about 882 N [11]. Histologically, the basis of the ligamentum capitis femoris is composed of collagen fiber bundles and is surrounded by a layer of investing synovium composed of a single layer of cuboidal cells [12, 13]. The ligamentum capitis femoris had six anchoring points on the acetabulum and one anchoring point on the femur [14].

The biomechanical function of the ligamentum capitis femoris has not been unambiguously determined [15] and is subject to controversy. Tonkov wrote that the ligamentum capitis femoris function “… is not perfectly clear; in any case, its mechanical significance is not so great” [9]. However, according to Neverov and Shil’nikov, it plays an important role in the hip joint biomechanics [16], while Vorob’ev claimed that its “biomechanical function” is of importance only under certain conditions [17]. On the other hand, Pirogov compared the ligamentum capitis femoris to “a steel spring on which the pelvis is suspended from the caput” [18]. Gerdy and Savory [19] advanced a similar opinion, the former author noting that the ligamentum capitis femoris is exerted in the erect posture. Ivanitskii, when touching on the role of the ligamentum capitis femoris in maintaining an erect posture, wrote [20], “in an asymmetrical posture, with the pelvis tilted, the ligamentum capitis femoris on the side of the supporting, usually straightened, leg is stretched to reinforce the hip joint” [20].

In hip joint biomechanics, it is commonly accepted that maintaining an one-support orthostatic posture in the frontal plane depends only on muscles [21–25]. The ligamentum capitis femoris is not mentioned as a functional component of the hip joint, and its mechanical reaction is not considered in calculating the head of femur loading.

The purpose of this study was to clarify the function of the ligamentum capitis femoris and its role in maintaining one-support orthostatic posture. 

Materials and Methods

In order to clarify the functions of the ligamentum capitis femoris and abductor muscle group, we constructed a dynamic model of the hip joint (Figure 1) [26]. We used a Thompson unipolar endoprosthesis fixed on a base, named as a femoral basal element. In accordance with the diameter of the head of endoprosthesis (head of femur analogue), a metal model of the acetabulum was made in the form of a thick-walled spherical shell having a shaped recess that simulated the acetabular fossa and notch. A profiled plane simulated pelvis and a plate for suspending a load, a 1- to 3-kg dumbbell, were attached from the outside. The model contained an ligamentum capitis femoris analogue made from a metal cord 2 mm in diameter and external ligaments analogues (iliofemoral, ischiofemoral, and pubofemorale ligaments) made from a metal cord 1.5 mm in diameter. One end of ligamentum capitis femoris analogue was tightly fixed to an opening made in the shaped recess of the acetabulum model, and the other, to the head of endoprosthesis. Both parts of the model were also linked to a dynamometer, whose spring simulated the function of the abductor muscle group; oil lubricated the friction node. The properties of the model were studied both in the absence of the ligamentum capitis femoris analogue, external ligaments analogues, and abductor muscle group analogues and in their presence in different combinations. In some experiments, we changed the length of the abductor muscle group analogue, thereby modeling different degrees of its tension. We determined the possible rotational and translational movements in the hinge of the model, their range, and constraints. We modeled equilibrium conditions for the pelvis moving in the frontal plane in the unstrained and strained types of one-support orthostatic posture.

Figure 1Dynamic hip joint model (Application RU2009124926 A, June 29, 2009. 2011.) 

 
Results and Discussion

Experiments with a dynamic model of the hip joint showed that the ligamentum capitis femoris imposes constraints on the hip joint adduction by limiting abduction, pronation and supination, and translational outward and upward head of femur movements, and also prevents dislocation. Stretching of the ligamentum capitis femoris is brought about by adducting the hip and inclining the pelvis to the nonsupporting side, the hip joint locking in the frontal plane, becoming an analogue of a third-class lever. In the absence of abductor muscle group tension, the resultant force acting on the hip joint is directed upwards, loading only the inner lower part of the head of femur. Our data confirm that straining of the abductor muscle group increases abduction of the hip joint. In cooperation with antagonists, it is capable of locking the hip joint in the frontal plane in an arbitrary position. If the abductor muscle group is exerted without stretching of the ligamentum capitis femoris, the resultant force acting on the head of femur is directed upwards, loading only the inner upper part of the head of femur. The abductor muscle group cooperates with the ligamentum capitis femoris in constraining adduction. Its tightening can decrease the ligamentum capitis femoris stretching, and, vice versa, stretched ligamentum capitis femoris decreases the load on the abductor muscle group. 

It was established experimentally that the ligamentum capitis femoris is not subjected to stretching in a strained one-support orthostatic posture, while the abductor muscle group and its antagonists locking the hip joint movements in the frontal plane. Here, the hip joint is an analogue of a first-class lever, which means loading of the upper hemisphere of the head of femur. If we assume that the lever of the body weight exceeds threefold the lever of the abductor muscle group effort [25], then the force produced by the abductor muscle group will be three times greater than the body weight. Then, the resultant downward force acting on the head of femur is four times greater than the body weight.

Analysis of the experimental data and results of clinical examinations indicates that, in the unstrained one-support orthostatic posture, hip adduction and tilting of the pelvis toward nonsupporting side are constrained including by stretching ligamentum capitis femoris, which agrees with the opinions of other authors [20, 27]. The pelvis, as stated by Pirogov, is “suspended” from the ligamentum capitis femoris [18]. The combination of stretching of the ligamentum capitis femoris and tension of the abductor muscle group is optimal in terms of loading all elements of hip joint and maintaining the steadiness of the erect posture in the frontal plane.

Given this type of a one-support orthostatic posture, both the stretched ligamentum capitis femoris and the tension abductor muscle group deviate from the vertical. The horizontal components of the reaction forces of the ligamentum capitis femoris and the abductor muscle group are summed, resulting in a horizontal force that uniformly presses the acetabulum to the head of femur. The mean angular deviation from the vertical of the force produced by the abductor muscle group is 21°[22]; the angular deviation of the ligamentum capitis femoris is, according to our data, about 50°. The calculations show that the amount of pressing the pelvis to the head of femur is approximately equal to twice the weight of the body (1.96P), with the horizontal component of the ligamentum capitis femoris reaction force equal to 1.6P and the horizontal component of the abductor muscle group reaction force equal to 0.36P. The loads on the upper and lower head of femur hemispheres are approximately equivalent to the body weight without taking into account the mass of the supporting leg.

In an unstrained one-support orthostatic posture (pose of an antique statue) with little or no participation of the abductor muscle, the movement of the hip joint in the frontal plane is that of a third-class lever analogue. If we assume that the lever of the body weight exceeds threefold the lever of the ligamentum capitis femoris reaction force, the ligamentum capitis femoris reaction force is equal to three times the weight of the body. The resultant upward force acting on the lower head of femur is equal to two times the weight of the body. 

Conclusion

1. We established experimentally that the ligamentum capitis femoris constrains adduction and lateral and cranial displacement of the head of femur and can locking the hip joint in the frontal plane, which is equivalent to the transformation of this structure into an analogue of a third-class lever.

2. In the unstrained type of the one-support orthostatic posture, when the frontal locking of the hip joint is carried out, including through the ligamentum capitis femoris, the group of abductor muscle can be unloaded. In this case, the resultant load on the head of femur, being approximately equal to twice the body weight. This load is evenly distributed between the upper and lower hemispheres the head of femur, if a commensurate tension of the abductor muscle group and stretching of the ligamentum capitis femoris is combined.

3. Ligamentum capitis femoris stretching does not occur in a strained type of the one-support orthostatic position. The hip joint is fix in the frontal plane by tension of the abductor muscle group and its antagonists, the resultant load on the head of femur having a downward direction, acts on the upper hemisphere and being approximately equal to four times the body weight.

Conflict of Interest

None declared. 

References

1. Adams F (1849). Hippocrates: The genuine works of Hippocrates; translated from the Greek, with a preliminary discourse and annotations. Vol. 1, 2. Sydenham society, London.

2. Littre E (1844) Oeuvres complètes d'Hippocrate, traduction nouvelle avec le texte grec en regard, collationné sur les manuscrits et toutes les éditions; accompagnée d'une introduction, de commentaires médicaux, de variantes et de notes philologiques; Suivie d'une table générale des matières, Par É.Littré. Tome quatrieme. J.B.Baillière, Paris.

3. Cornarius I (1564). Hippocratis: Coi medicorum, omnium facile principis Opera quae extant omnia, Jano Cornario Medico Physico interprete. Apud Haeredes Iacobi Iunctae, Lugduni.

4. Archipov SV, Skvortsov DV (2019) Ligamentum capitis femoris: first written mentions. MLTJ 9(2): 156–164.

5. Galenus C (1597) Galeni librorum quinta classis eam medicinae partem, que ad Pharmaciam spectat, exponens, simplicium medicamentoru, substitutorum, purgantium, antidotorum, componendorum tam per locos quam per genera medicamentorum, ponderum denique, ac mensurarum doctrinam comprehendit: Septima hac nostra editione, … Librorum numerus proximo folio continetur. Apud Iuntas, Veneijs.

6. Cocchi A (1745) Dell'anatomia. Discorso d'Antonio Cocchi Мugellano. Nella stamperia di Gio Batista Zannoni, Firenze.

7. Kollesch J, Kudlien F (1965) Apollonii Citiensis In Hippocratis De articulis commentarius, ediderunt J.Kollesch et F.Kudlien, in linguam Germanicam transtulerunt J.Kollesch et D.Nickel, Corpus Medicorum Graecorum XI 1, 1. Akademie-Verlag, Berlin.

8. Arkhipov SV (2013) Rol svyazki golovki bedrennoy kosti v patogeneze koksartroza. Cand. Sci. (Med.) Dissertation. Peoples’ Friendship University of Russia. Moscow.

9. Tonkov V (1946) Anatomiya cheloveka: Obshchaya chast': Sistema organov dvizheniya. Medgiz, Leningrad.

10. Philippon MJ, Rasmussen MT, Turnbull TL, Trindade CAC, Hamming MG et al. (2014) Structural properties of the native ligamentum teres. Orthop J Sports Med 2: 2325967114561962.

11. Wenger D, Miyanji F, Mahar A, Oka R (2007) The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children’s hip surgery. J Pediatr Orthop 27: 408–410.

12. Dehao BW, Bing TK, Young JLS (2015) Understanding the ligamentum teres of the hip: a histological study. Acta Ortop Bras 23: 29–33.

13. O’Donnell JM, Devitt B M, Arora M (2018) The role of the ligamentum teres in the adult hip: redundant or relevant? A review. J Hip Preserv Surg 5(1): 15-22.

14. Brady AW, Mikula JD, Chahla J, Slette E, Trindade C. et al. (2016) Anatomic analysis of the native ligamentum teres. J Hip Preserv Surg 3(suppl_1).

15. Byrd JW (1998) Operative Hip Arthroscopy. Thieme, New York.

16. Neverov VA, Shil’nikov VA (1993) Sposob fornirovaniya iskusstvennoj golovki bedra pri endoprotezirovanii. Vestn Khir 7-12: 81–83.

17. Vorob’ev NA (1962) Svyazka golovki bedra i yeye prakticheskoye znachenuye. In Voprosy travmatologii i ortopedii. Kiev, 157–174.

18. Yurchak VF, Yevtushenko VA (1972) Morphological Features of the Fetal Hip Joint in the Second Half of Pregnancy. Ortoped Travmatol 1: 26–32.

19. Nikolaev LN (1922) The Role of the Orbicular Ligament in the Hip Joint. Med Zh 3(1-2-3): 10–12.

20. Ivanitskii MF (1985) Anatomiya cheloveka s osnovami dinamicheskoy i sportivnoy morfologii: Uchebnik dlya institutov fizicheskoy kultury. Fizkultura i Sport, Leningrad.

21. Belen’kij VE (1962) Some Problems in Hip Joint Biomechanics. Cand. Sci. (Med.) Dissertation, Moscow.

22. Shapovalov VM, Shatrov NP, Tikhilolv RM, Shtilman NV (1998) The Load Pattern in the Hip Joint in Acetabular Dysplasia and Caput Femoris Osteonecrosis. Travmatol Ortoped Ross 3: 22–26.

23. Yanson HA (1975) Biomekhanika nizhnei konechnosti cheloveka. Zinatne, Riga.

24. Bombelli R (1993) Structure and Function in Normal and Abnormal Hip: How to Rescue Mechanically Jeopardized Hip. Springer, Berlin.

25. Pauwels F (1965) Gesammelte Abhandlung zur funktionellen Anatomie des Bewegungsapparates. Springer, Berlin.

26. Arkhipov SV (2009) Dynamic model of the hip joint. Positive decision to grant a patent of the Russian Federation on the application for the invention №2009124926A.

27. Vorob’ev VP (1932) Anatomiya cheloveka: Rukovodstvo i atlas dlya studentov i vrachej. Vol. 1. Medgiz, Moscow. 

Authors & Affiliations

1. Sergey V. Arkhipov (Ph.D.)

2. Nikolay V. Zagorodny (Prof., Ph.D.)

3. Dmitry V. Skvortsov (Prof., Ph.D.)

Corresponding author: Sergey Vasilyevich Arkhipov

Organization: N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, Russia

External links

Arkhipov SV, Zagorodny NV, Skvortsov DV. Ligamentum capitis femoris a pilot an experimental study. Am J Biomed Sci & Res. 2019;5(2)92-4. DOI:10.34297/AJBSR.2019.05.000884 [researchgate.net(PDF)  , biomedgrid.com]

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, abductor muscle group, hip joint, model, biomechanics 

                                                                     .

NB! The first publication did not contain an image of the model.

BLOG CONTENT

EXPERIMENTS AND OBSERVATIONS

Comments

Popular posts from this blog

LCF in 2025 (September)

  LCF in 2025 ( September )   (Quotes from articles and books published in  September  2025 mentioning the ligamentum capitis femoris)   Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).   01 September 2025. PREPRINT (Version 1)  [i]   researchsquare.com   Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.   [ii]   link.springer.com   Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis , 37 (3), 171-177.    [iii]    pmc.ncbi.nlm.nih.gov      Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P....

Main Scheme

  Interaction of ligaments of the hip joint and muscles during single-leg support  BLOG CONTENT IMAGES AND VIDEOS

0cent.4Q158.1-2

  Content [i]   Annotation [ii]   Original text [iii]   Translation [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments 1-2 of Dead Sea Scroll 4Q158.1-2, which previously contained part of Genesis 32 with a mention of ligamentum capitis femoris (LCF). We have translated the reconstructed text of M.M. Zahn (2009). The English translation is available at: 0 cent .4 Q 158.1-2 . [ii]   Original text Photocopy   Dead Sea Scroll 4Q158, fragments 1-2 (Plate 138, Frag. 4 B-358482), material – parchment, text – Hebrew, period – Herodian. A screenshot of the original from The Leon Levy dead sea scrolls Digital Library collection, © 2025 Israel Antiquities Authority  deadseascrolls.org.il   (Fair use for criticism, study and comparison; sharpening, color correction, and captions done by us.).   Transcription Dead Sea Scroll 4Q158, fragments 1-2, lines 11...

Grok. Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?".

  At our request, Grok, artificial intelligence developed by xAI, wrote a review of the article by Arkhipov SV. Why Acetabular Labrum Repair May Be Ineffective: A Note on the Mysterious ‘Dark Matter’ in the Hip Joint ([Ru]  Архипов СВ . Почему восстановление вертлужной губы может быть неэффективно?: Заметка о таинственной «темной материи» в тазобедренном суставе. 06.04.2025 ). In accordance with the comments, the article was revised and sent for re-review to the ChatGPT language model prepared to assist in the analysis and editing of texts (OpenAI, 2025).  Below is the original text of the review by Grok: Review of the Article by S.V. Arkhipov "Why Restoration of the Acetabular Labrum May Be Ineffective?: A Note on the Mysterious 'Dark Matter' of the Hip Joint". This review focuses on the analysis of argumentation, as requested. The author asserts that restoration of the acetabular labrum fails to prevent hip joint instability and osteoarthritis when the ligame...

LCF in 2025 (August)

  LCF in 2025 ( August )   (Quotes from articles and books published in  August  2025 mentioning the ligamentum capitis femoris)   Castro, A., de Melo, C., & Leal, F. (2025). Complications in hip Arthroscopy: Recognizing and managing adverse events. Journal of Clinical Orthopaedics and Trauma , 103144.   [i]   journal-cot.com   Negayama, T., Nishimura, H., Murata, Y., Nakayama, K., Takada, S., Nakashima, H., ... & Uchida, S. (2025). Factors associated with treatment failure after hip arthroscopic surgery for the patient with femoroacetabular impingement secondary to Legg-Calvé-Perthes disease. Journal of ISAKOS , 100937.   [ii]   jisakos.com   Wegman, S. J., Shaikh, H., Brodell Jr, J. D., Cook, P. C., & Giordano, B. D. (2025). Femoral head osteochondral allograft transplantation with and without simultaneous periacetabular osteotomy: a case series. Journal of Hip Preservation Surgery , hnaf037.   [iii] ...

1541MondinoL_DryanderJ

  Fragment from the book Mondino de Luzzi, Dryander J. Anatomia Mundini (1541). An early description of the anatomy and role of the ligamentum capitis femoris (LCF) is presented. The pathogenesis of lameness and soft tissue atrophy in LCF pathology is discussed. For more details, see the commentary in  1541MondinoL_DryanderJ [Rus] .  Quote p. 62. [Lat] De anatomia cruris [&] pedis. Postea eleua musculos & chordas &, uide ossa. Et primura est os foemoris supra quod fabricatae sunt spondiles dorsi: & per consequens totum corpus in parte inferiori habet pixidem quondam, in cuius concauitate locata est extremitas rotunda canna coxae, que uocatur uertebrum. Et in medio amborum in parte anteriori est quod dam ligamentum, quod aliomodo porestuocari uertebrum: & quando hoc uel primum resilit foras: tunc niecesse ed hominem claudicare, quia crus hic elongatur & firmari non potest; & totum non bene potest supportari: & necesse eit etiam ut crus tab...

1993ArkhipovSV

  The publication describes the design of a total hip joint endoprosthesis, which became a prototype of an artificial hip joint with analogous to the ligamentum capitis femoris (LCF). Complete hip joint prosthesis designed by S.V. Arkhipova (Полный протез тазобедренного сустава конструкции С.В. Архипова ) Patent RU2089135 Inventor  Sergey Vasilyevich Arkhipov Сергей Васильевич Архипов Original Assignee Sergey Vasilyevich Arkhipov Сергей Васильевич Архипов 1993-12-30 Application filed by Сергей Васильевич Архипов 1993-12-30 Priority to RU93057862A 1996-07-27 Publication of RU93057862A 1997-09-10 Application granted 1997-09-10 Publication of RU2089135C1 Abstract FIELD: medicine; prosthetics. SUBSTANCE: proposed complete prosthesis for hip joint comprises femoral component and acetabular components, both components being interconnected by pivot. Outer surface of acetabular component is provided with threads and grooves. Shank is made in form of collet chuck, tabs of whi...

Online Journal «ABOUT ROUND LIGAMENT OF FEMUR», August 2025

  The journal is dedicated to the ligamentum capitis femoris (LCF) and related topics   About the Journal   »»»                                                                                . The online journal  « About Round Ligament of  Femur »   was created based on the scientific blog of the same name. The resource is the English-language part of the project:  ONLINE JOURNAL:  Ligamentum capitis femoris .   Updates:  As new materials are prepared. Mission :   Popularization and preservation of knowledge about LCF, as well as promoting its practical application. Main goal:  Improvement of diagnosis, treatment, and prevention of injuries and diseases of the hip joint. Publisher:  Arkhipov S.V., independent researc...

17c.FranckenFII

  Frans Francken II , painting Jacob Wrestling with the Angel (16 – 17th cent.).   Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not pre vail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Frans  Francken II  –  Jacob Wrestling with the Angel  (16 – 17t...

IMAGES AND VIDEOS

IMAGES AND VIDEOS   ( Drawings, diagrams, photographs, videos... )   T he Oldest Images of the LCF  ( video )  The three oldest images of the ligamentum capitis  femoris.  1000Jacob&Archangel.  Drawing depicting the circumstances and mechanism of the LCF injury. 1510Leonardo_da_Vinci  In the drawing, a uthor  depicted the distal fragment of the LCF.  1639BreenberghB.   Drawing depicting the circumstances and mechanism of the LCF injury. 1685BidlooG   A stretched ligament is shown. 17c.OvensJ.   Drawing depicting the circumstances and mechanism of the LCF injury. 17c.PatelP .  Drawing depicting the circumstances and mechanism of the LCF injury.   1738LadmiralJ  The first illustration and description of the LCF in an infant.  1794LoderJC   Image of the hip joint, ligamentum capitis femoris (LCF) and peripheral part of the acetabular canal. 1827Pax tonJ   Visualization of th e LCF through...