Skip to main content

Classification of Functions of LCF


Version: 20240224

Introduction

On the biology, the common meaning of 'function' is that of role, effect, or transformation rule (1994MorenoA_Fern´andezJ). The function of ligamentum capitis femoris (LCF) is still unknown (2009LampertC) and the ligament itself continues to bewilder and fascinate orthopaedic surgeons (2020Rosinsky_DombBG). The largest collections of opinions on the function of the LCF are contained in our works (2004Архипов-БалтийскийСВ; 2018,2023АрхиповСВ). The classification of the function of the LCF necessary to determine the directions for further study of this structure, the choice of goals and methods for its surgical recovery. The reconstruction of the LCF without restoring specific functions to solve a clearly defined clinical and biomechanical problem is nothing more than a cosmetic procedure.

The proposed classification based on experimental and clinical studies of the author, as well as because of an analysis of literary sources. All the selected functions of the LCF divided into four types - physical, biochemical, biological and informational (Tables 1-4). We proposed to divide functions into hierarchical units similar to the elements of the systematics of living organisms: phylum, class, order, family, genus, and specie. Each function is marked with a color indicating the highest level of evidence as of the current date. The sequence of levels is located on the “confidence scale” from the highest mark - “axiom” to the lowest mark - “error” (Table 5). With further study of the LCF, we plan to expand on the above above functions and clarify the levels of evidence used.

References

Moreno A, Umerez, J, Fern´andez J. Definition of life and research program in artificial life. Ludus Vitalis. 1994;2(3)15–33.

Lampert C. Läsionen des lig. capitis femoris: pathologie und therapie. Arthroskopie. 2009;22(4)293–8.

Rosinsky PJ, Shapira J, Lall AC, Domb BG. All About the Ligamentum Teres: From Biomechanical Role to Surgical Reconstruction. J Am Acad Orthop Surg. 2020; 28(8)e328–e39.

Архипов-Балтийский С.В. Рассуждение о морфомеханике. Норма. T.2. Калининград, 2004. [In Russ.]

Архипов С.В. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования…, Т.5. Королев, 2018. [In Russ.]

Архипов С.В. Связка головки бедренной кости: функция и роль в патогенезе коксартроза; 2-ое изд., испр. и доп. Йоэнсуу: Издание Автора, 2023. [In Russ.] 

Physical functions of the LCF (Table 1) 

Elastic forces functions

 

Static functions

 

Damping functions:

 

- for the pelvis

 

- for the femur

 

Protective function:

 

- for the transit vessels (arterial, venous, lymphatic)

 

- for the nerves (r. post. n. obtur. and other nerves)

 

Local compression functions:

 

... of the femoral head:

 

- the cartilaginous part

 

- the bony part

 

...of the acetabulum:

 

- the cartilaginous part (model of the acetabulum)

 

- the bony part (lunate surface)

 

Dislocation functions

 

Synovial fluid mixing function

 

Synovial fluid distribution function

 

Mesenchyme separation function

 

Reaction force functions (horizontal, vertical, tangential)

 

Dynamic functions

 

Functions of restriction (braking):

 

... translational movements

 

... of femur:

 

- on the cranial direction

 

- on the lateral direction

 

- on the medial direction

 

- forward

 

- back

 

of pelvis:

 

- on the caudal direction

 

- on the medial direction

 

- on the lateral direction

 

- forward

 

- back

 

... rotational movements

 

... of femur

 

on the horizontal plane:

 

- pronation

 

- supination

 

… on the frontal plane:

 

... adduction

 

... abduction

 

... of pelvis

 

on the horizontal plane:

 

- turn forward

 

- turn back

 

on the frontal plane:

 

- medial tilt

 

Motion correction functions:

 

... of pelvis:

 

- lateral tilt with turning forward

 

- lateral tilt with turning back

 

- medial tilt with leaning forward

 

- medial tilt with leaning back

 

- turn forward after turn back

 

- turn back after turn forward

 

- lateral displacement after subluxation

 

- lateral displacement with adduction, pronation and supination

 

... of femur:

 

- increased adduction with flexion

 

- increased adduction with extension

 

- increased abduction with pronation

 

- increased abduction with supination

 

- medial displacement with adduction, pronation, and supination

 

- medial displacement with initial lateralization

 

- increased lateral displacement with abduction and flexion

 

Biomechanical functions:

 

Converting a hip into an analog of third-class lever

 

Shunting of the load of the horizontal part of the iliofemoral ligament

 

Shunting of the load of the abductor muscle group

 

Reducing the load on the pronators and supinators while walking

 

Reducing the load on the pronators and supinators while running

 

Reducing the load on the flexors and extensors while walking

 

Reducing the load on the flexors and extensors while running

 

Ensuring rhythmic walking

 

Ensuring rhythmic running

 

Ensuring gait symmetry

 

Ensuring running symmetry

 

Ensuring minimal body sway while walking

 

Determination of the maximum speed of pelvic rotation while walking

 

Determination of the maximum speed of pelvic rotation while running

 

Determination of the amplitude of the inclination and rotation of the pelvis while walking

 

Determination of the amplitude of the inclination and rotation of the pelvis while running

 

Determination of the maximum frequency of pelvic rotation

 

Determining the maximum step frequency

 

Determination of the maximum frequency of shoulder girdle rotation while walking

 

Determining of the maximum frequency of hand fluctuations

 

Determination of the trajectory of movement of the common center of mass of the body

 

Determination of the acceleration of movement of the common center of mass of the body

 

Converting potential energy into kinetic energy while walking

 

Converting potential energy into kinetic energy while running

 

Anti-gravity dynamic functions:

 

Support pelvic and body while walking


Support pelvic and body while running

 

Reducing body weight while walking (lifting force generation)

 

Reducing the vertical component of the reaction force while walking

 

Reducing the transverse component of the reaction force while walking

 

Tribological functions:

 

Influence on friction coefficient

 

Influence on the reaction force of the femoral head

 

Static functions

 

Stabilization functions:

 

- of pelvis in one-support orthostatic position

 

- of pelvis in two-support asymmetrical orthostatic position

 

- of femoral head in the acetabulum:

 

- macrostabilization (antiluxation)

 

- microstabilization (antisubluxation)

 

Anti-gravity static functions (suspension):

 

- of pelvis in one-support orthostatic position

 

- of pelvis in two-support asymmetrical orthostatic position

 

- of femur with flexion-adduction-supination (legs crossed sitting pose)

 

Conducting functions (bridge, tunnel):

 

- for transit vessels (arterial, venous, lymphatic)

 

- for nerves (rr. post. n. obtur., rr. musc. n. fem., n. glut. inf. …)

 

Functions of the femoral head connection to the:


- fossa acetabulum

 

- incisura acetabulum

 

- ligamentum transversum

 

- periosteum of the pelvis

 

- membrana obturatoria

 

Tensorogenic functions:

 

Influences on the distribution and magnitude of internal forces (stresses) in the:

 

- femoral head (below «+»; above «-»)

 

- acetabulum (below «+»; above «-»)

 

- external ligaments and joint capsule (shunt)

 

- transverse ligament of the acetabulum (spraining)

 

- abductor muscle group (shunt)

 

Influences on the shape, size and position (deformation, displacement):

 

- of femoral head

 

- of femoral neck

 

- of acetabulum

 

- of hip bone

 

- of pelvis

 

- of lumbosacral spine

 

Biochemical functions of the LCF (Table 2)

Functions of regulation of synovial fluid properties:


- volume


- fluidity


- osmotic pressure


- viscosity


- surface tension


- wetting


- density


- temperature


- gas pressure


Producing functions:

 

Water excretion


Production of organic components


Production of inorganic components


Gas excretion


Excretion of atypical chemicals


Absorption function:

 

Water absorption


Absorption of organic components


Absorption of inorganic


Absorption of atypical chemical compounds (e.g. drugs)


Gas absorption


Dissolution functions:

 

Dissolution of inorganic substances (urates, calcium dihydropyrophosphate, hydroxyapatite)


Dissolution of organic substances (fibrinolysis, emulsification of bone marrow fat)


Gas dissolution


Deposition functions:

 

Crystallization of inorganic substances (urates, calcium dihydropyrophosphate)


Protein denaturation


Demulsification of fat


Biological functions of the LCF (Table 3)

Adaptation functions:


Synovial fluid volume regulation


Synovial fluid composition regulation


Hip joint temperature regulation


Hip joint pressure regulation


Involvement in immune processes


Maintaining one-support orthostatic position and two-support asymmetrical orthostatic position


Device for locomotion


Resource allocation functions:


Power distribution


Material distribution


Synthetic functions:


Cytopoietic function (synoviocytes, histiocytes, lymphocytes, neutrophils, monocytes)


The formation of chondromic bodies (synovial chondromatosis)


The formation of synovial cysts


Sanitation functions (synovial fluid sanitation):


Destruction function (cells, fibers, bacteria, tissue detritus, pus, blood clots, bone, cartilage fragments)


Extraction function (removal of degradation products)


Hormonal functions of adipose tissue:


Hormone synthesis (leptin, angiotensin, estrogen, resistin, adipsin, adiponectin)


Enzyme synthesis (plasminogen, liporotein lipase)


Peptide synthetsis (cytokines, eicosanides)


Remodeling functions:


Synovial fluid remodeling


Remodeling of adipose tissue of the acetabulum


Remodeling of the ligamentous apparatus


Articular cartilage remodeling


Acetabular labral remodeling


Bone remodeling


Tendon remodeling of abductor muscles


Remodeling muscle tissue of abductor muscles


Shape-forming functions (morphogenesis, transformation):


The formation of the external ligaments of the hip joint


The formation of cartilage (labrum acetabulum, femoral head, cartilage model of the acetabulum)


The formation of hip bone and femur


The formation of adjacent joints (pubic symphysis, sacroiliac joint, knee)


The formation of the parts of the skeleton (pelvis, spine)


Trophic functions:


Cartilage nutrition


Blood supply of the femoral head


Transport functions:


Tissue transport


Blood circulation


Lymphatic circulation


Information functions of the LCF  (Table 4)

Conductive functions:


Afferent function


Efferent function


Receptor functions:


Mechanoreceptor functions:


Baroreceptor function


Vibroreceptor function


Tensoreceptor function


Thermoreceptor functions:


Cold-sensitive function


Heat-sensitive function


Chemoreceptor function


Sensitive functions:


Kinesthesia


Proprioception


Nociception


Immuno-information functions:


Cellular immune function


Humoral immune functions


Trigger function


Metronome function


Levels of evidence of functions of the LCF with their conventional names and symbols (Table 5)

Color and number designations of evidence levels

Names of evidence levels

1

Axiom

2

Research

3

Experiment

4

Observation

5

Calculation

6

Figure

7

Publication

8

Hypothesis

9

Error

Keywords: ligamentum capitis femoris, ligamentum teres, ligament of head of femur, role, function, hip joint, biomechanics

                                                                     

In translating to English, the author is assisted by ChatGPT (version 3.5) and the Google Translate service.


BLOG CONTENT

Set of Classifications

Comments

Popular posts from this blog

4cent.Gothic Bible

  About the Book of Genesis of the Gothic Bible (4th century). A Gothic term that may have been used to refer to the ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 4cent.Gothic Bible [Rus]. Quote [ Got ] Genesis 32:33 (possible term;  original source  lost) Translation [Eng] Genesis 32:33 The original text and English translation are currently unavailable to our project. Suggested term: … gabinda ( gabundi) … The closest analogue is in the Epistle to the Colossians 2:19 — jah ni habands haubiþ, us þammei all leik þairh gawissins jah gabindos auknando jah þeihando wahseiþ du wahstau gudis. — καὶ οὐ κρατῶν τὴν κεφαλήν , ἐξ οὗ πᾶν τὸ σῶμα διὰ τῶν ἁφῶν καὶ συνδέσμων ἐπιχορηγούμενον καὶ συμβιβαζόμενον αὔξει τὴν αὔξησιν τοῦ θεοῦ . — And not holding the Head, from which all the body by joints and bands having nourishment ministered, and knit together, increaseth with the increase of God. (original source: wulfila.be ; Codex Ambrosianus? Milan, Bi

2018FreitasA_BandeiraVC

  The authors reported a case of open hip dislocation and documented avulsion of the ligamentum capitis femoris (LCF) from the acetabulum.  The injured LCF appeared as a large cord-like structure, attached to the femoral head ( Fig. 1 ). Perhaps Hippocrates of Kos saw such an LCF in open dislocation of the hip and described it in his treatise «Mochlicus» ( 1886AdamsF ). One year later, the patient's x-ray revealed a significant narrowing of the joint space in the upper part of the hip joint ( Fig. 9 ). In our opinion, this to be a consequence of hyaline cartilage wear due to overload in the absence of LCF. In an unaffected hip joint, the width of the radiological joint space at the upper section than in the lower section ( Ossification of the LCF ). When examined one year after the injury, the patient could stand on one leg. We noticed that his body was excessively deviated towards the supporting hip joint, and the opposite half of the pelvis was elevated ( Fig. 8 ). This is a me

1875BrauneW

  We present a study dedicated to the experimental investigation of the function of the ligamentum capitis femoris (LCF). Wilhelm Braune established that the LCF prevents hip supination and adduction, especially during flexion. In the conclusion of the study, the author writes: "It also remains to determine in which body movements this ligament function plays a role, as it is currently unclear why the femur requires a special fixing device…". Apparently, Wilhelm Braune did not have time to find the answer, since his outstanding monograph on LCF does not say a word ( Braune W, Fischer O. Der Gang des Menschen (1895 books.google ) . Based on our own experiments on mechanical models and research, we believe that adduction and supination of the hip, along with flexion, are observed at the beginning of the single-support period of the step. At this moment, tension occurs in the LCF, allowing to reduce the load on the upper segment of the femoral head. The LCF is also stretched in

927-942Arabic Bible

  Fragment of the Book of Bereshit   translated into Arabic by Saadia Gaon  ( 927-942 ) . The Arabic text contains mentioned to ligamentum capitis femoris (LCF) of an animal and a human. See our commentary at the link: 927-942ArabicBible [Rus].  Quote [ a ra] التكوين  32:32 (original source: 1653WaltonB, p. 145) See also modern editions:   لذلك لا يأكل بنو اسرائيل عرق النّسا الذي على حقّ الفخذ الى هذا اليوم . لانه ضرب حقّ فخذ يعقوب على عرق النّسا (original source: arabicbible.com )  لِذَلِكَ لا يَاكُلُ بَنُو اسْرَائِيلَ عِرْقَ النَّسَا الَّذِي عَلَى حُقِّ الْفَخِْذِ الَى هَذَا الْيَوْمِ لانَّهُ ضَرَبَ حُقَّ فَخْذِ يَعْقُوبَ عَلَى عِرْقِ النَّسَا (original source: copticchurch.net ) Translation [Eng] Genesis 32:32 Translation of the text is currently unavailable for our project. The term for the LCF:  النّسا   ~  sciatica  ( see also: 70-110Rufus Ephesius ; 180-238PolluxJ ) Saʻadia ben Joseph . Pentateuch ( 1600) , p. 1  ( original:  digital.library.yu.edu ) External links Saʻadia

2016ArkhipovaAS Classification of Joints with Flexible Elements.

  Classification of Joints with Flexible Elements The classification of joints with flexible elements was first proposed by A.S. Arkhipova in 2016 and presented at conferences in 2016-2017 ( 2017АрхиповаАС ). Joints with flexible elements are divided by the author into detachable and non-detachable, three-axis, two-axis, and single-axis. Each can contain in various combinations one or more external and internal flexible elements - analogs of joint ligaments, including the ligamentum capitis femoris (LCF). Conditional designations of joints with flexible elements using the example of a ball joint: Detachable ball joint with an internal flexible element Non-detachable ball joint with an internal flexible element Detachable ball joint with an external flexible element Non-detachable ball joint with an external flexible element Detachable ball joint with both internal and external flexible elements Non-detachable ball joint with both internal and external flexible elements Flexible e

1879MorrisH

  Fragments of the book Morris H. The anatomy of the joints of man (1879) dedicated to ligamentum capitis femoris (LCF). The author discusses the anatomy of the LCF and describes his experiments to study its movement.   Quote p p . 318-319 The acetabulum is partly articular, partly non-articular. The articular portion is of horseshoe shape, and extends inwards from the margin, more or less. It is altogether deficient at the cotyloid notch, which corresponds with the gap of the horseshoe. It is the widest at the iliac part, where it is over one inch from without inwards; then it very gradually gets narrower along the ischium, but widens out again at the ischial end of the cotyloid notch ; forwards from the pubo-iliac suture it narrows more rapidly, and does not extend quite up to the pubic end of the cotyloid notch. At its narrowest point in an adult bone it measures half an inch in width. When coated with cartilage, and fringed round with the cotyloid ligament, it fits very closel

DIAGNOSTICS AND EXAMINATION

  DIAGNOSTICS AND EXAMINATION   (Diagnostic, examination and testing methods... ) Catalog. LCF Pathology Tests   Tests for the detection of pathology LCF.  2004VialleR_GlorionC  The article discusses the examination technique for dislocation of the femur and describes the radiographic symptom of infringement of the damaged LCF. BLOG CONTENT

150-250Targum Jonathan

  Fragments from the Targum Jonathan on Genesis. Tractate was written between about 150 - 250 in lend of Israel. The text is a combination of a translation and commentary on the book of Bereshit. The unknown compiler mentions ligamentum capitis femoris (LCF) in an animal and an episode of its damage in a human. See our commentary at the link: 150-250Targum Jonathan [Rus]. Quote 1. [Heb] Genesis. 32:33 (original source:  sefaria.org ) Quote 2. [Heb] Genesis. 43:16 (original source:  sefaria.org ) Translation Quote 1. [Eng] Genesis. 32:33 Therefore, the sons of Israel eat not the sinew which shrank, which is in the hollow of the thigh of cattle and of wild animals, until this day; because the Angel touched and laid hold of the hollow of the right thigh of Jakob, in the place of the sinew which shrank. (Transl. by J.W. Etheridge (186 2 ) ; original source: targum.info ) Quote 2. [Eng] Genesis. 43:16 And Joseph saw Benjamin with them: and he said to Menasheh whom he had made superintende

1679DiemerbroeckI

  Fragments from the book Diemerbroeck I. Anatome corporis humani (1679). The author describes the pathology variants, function, topography and attachment of the ligamentum capitis femoris (LCF). The damage to the LCF in hip dislocation, symptoms and treatment are discussed. The text is similar to a paraphrase of Hegetor's work «On Causes» and Galen of Pergamon's commentary on Hippocrates' treatise «On Joints» ( 1745CocchiA ;  2020ArkhipovSV_ProlyginaIV ). Isbrand van Diemerbroeck uses many synonyms for LCF: nervus cartilaginosus, terete, teres, rotundum ligamentum, interius ligamentum. Quote p. 593. [Lat] CAPUT XIX. De Ossibus Femoris, & Cruris. Superius procesum crassum, versus coxendicis os prominentem, eique epiphyin rotundam & amplam impositam habet, sicque globosum femoris caput, valida cervice subnixum, constituit, quod cartilagine obductum in coxendicis acetabulum reconditur, in eoque duobus validis ligamentis detinetur: uno lato, crasso, & membranoso,

2014ArkhipovaAS

  In 2014, at the International Olympics Space for school students, Alexandra Arkhipova presented a report on the feasibility of using joints with flexible elements in walking machines. The author was recognized as the overall winner (more details: cyclowiki.org ). The report suggested: «An important area of possible application of walking robots would be remote exploration of other planets». Ten years later, professionals from NASA began to put this idea into practice: Robot dog trains to walk on Moon in Oregon trials (more details: bbc.com ). Below we present the text of the first message about walking machines in space, the ball joint of which contains a flexible element - an analogue of the ligamentum capitis femoris (LCF).   Mobile biomorphic platforms with analogues of natural locomotion algorithms Arkhipova A.S. For ten years of its mission, American wheeled Mars rover vehicle 'Opportunity' covered just 40 kilometers through the Red Planet, and its twin Spirit go