Skip to main content

Classification of Functions of LCF


Version: 20240224

Introduction

On the biology, the common meaning of 'function' is that of role, effect, or transformation rule (1994MorenoA_Fern´andezJ). The function of ligamentum capitis femoris (LCF) is still unknown (2009LampertC) and the ligament itself continues to bewilder and fascinate orthopaedic surgeons (2020Rosinsky_DombBG). The largest collections of opinions on the function of the LCF are contained in our works (2004Архипов-БалтийскийСВ; 2018,2023АрхиповСВ). The classification of the function of the LCF necessary to determine the directions for further study of this structure, the choice of goals and methods for its surgical recovery. The reconstruction of the LCF without restoring specific functions to solve a clearly defined clinical and biomechanical problem is nothing more than a cosmetic procedure.

The proposed classification based on experimental and clinical studies of the author, as well as because of an analysis of literary sources. All the selected functions of the LCF divided into four types - physical, biochemical, biological and informational (Tables 1-4). We proposed to divide functions into hierarchical units similar to the elements of the systematics of living organisms: phylum, class, order, family, genus, and specie. Each function is marked with a color indicating the highest level of evidence as of the current date. The sequence of levels is located on the “confidence scale” from the highest mark - “axiom” to the lowest mark - “error” (Table 5). With further study of the LCF, we plan to expand on the above above functions and clarify the levels of evidence used.

References

Moreno A, Umerez, J, Fern´andez J. Definition of life and research program in artificial life. Ludus Vitalis. 1994;2(3)15–33.

Lampert C. Läsionen des lig. capitis femoris: pathologie und therapie. Arthroskopie. 2009;22(4)293–8.

Rosinsky PJ, Shapira J, Lall AC, Domb BG. All About the Ligamentum Teres: From Biomechanical Role to Surgical Reconstruction. J Am Acad Orthop Surg. 2020; 28(8)e328–e39.

Архипов-Балтийский С.В. Рассуждение о морфомеханике. Норма. T.2. Калининград, 2004. [In Russ.]

Архипов С.В. Биомеханика пингвинов: заметки к вопросу о причинах ковыляющей походки и перспективах ее ремоделирования…, Т.5. Королев, 2018. [In Russ.]

Архипов С.В. Связка головки бедренной кости: функция и роль в патогенезе коксартроза; 2-ое изд., испр. и доп. Йоэнсуу: Издание Автора, 2023. [In Russ.] 

Physical functions of the LCF (Table 1) 

Elastic forces functions

 

Static functions

 

Damping functions:

 

- for the pelvis

 

- for the femur

 

Protective function:

 

- for the transit vessels (arterial, venous, lymphatic)

 

- for the nerves (r. post. n. obtur. and other nerves)

 

Local compression functions:

 

... of the femoral head:

 

- the cartilaginous part

 

- the bony part

 

...of the acetabulum:

 

- the cartilaginous part (model of the acetabulum)

 

- the bony part (lunate surface)

 

Dislocation functions

 

Synovial fluid mixing function

 

Synovial fluid distribution function

 

Mesenchyme separation function

 

Reaction force functions (horizontal, vertical, tangential)

 

Dynamic functions

 

Functions of restriction (braking):

 

... translational movements

 

... of femur:

 

- on the cranial direction

 

- on the lateral direction

 

- on the medial direction

 

- forward

 

- back

 

of pelvis:

 

- on the caudal direction

 

- on the medial direction

 

- on the lateral direction

 

- forward

 

- back

 

... rotational movements

 

... of femur

 

on the horizontal plane:

 

- pronation

 

- supination

 

… on the frontal plane:

 

... adduction

 

... abduction

 

... of pelvis

 

on the horizontal plane:

 

- turn forward

 

- turn back

 

on the frontal plane:

 

- medial tilt

 

Motion correction functions:

 

... of pelvis:

 

- lateral tilt with turning forward

 

- lateral tilt with turning back

 

- medial tilt with leaning forward

 

- medial tilt with leaning back

 

- turn forward after turn back

 

- turn back after turn forward

 

- lateral displacement after subluxation

 

- lateral displacement with adduction, pronation and supination

 

... of femur:

 

- increased adduction with flexion

 

- increased adduction with extension

 

- increased abduction with pronation

 

- increased abduction with supination

 

- medial displacement with adduction, pronation, and supination

 

- medial displacement with initial lateralization

 

- increased lateral displacement with abduction and flexion

 

Biomechanical functions:

 

Converting a hip into an analog of third-class lever

 

Shunting of the load of the horizontal part of the iliofemoral ligament

 

Shunting of the load of the abductor muscle group

 

Reducing the load on the pronators and supinators while walking

 

Reducing the load on the pronators and supinators while running

 

Reducing the load on the flexors and extensors while walking

 

Reducing the load on the flexors and extensors while running

 

Ensuring rhythmic walking

 

Ensuring rhythmic running

 

Ensuring gait symmetry

 

Ensuring running symmetry

 

Ensuring minimal body sway while walking

 

Determination of the maximum speed of pelvic rotation while walking

 

Determination of the maximum speed of pelvic rotation while running

 

Determination of the amplitude of the inclination and rotation of the pelvis while walking

 

Determination of the amplitude of the inclination and rotation of the pelvis while running

 

Determination of the maximum frequency of pelvic rotation

 

Determining the maximum step frequency

 

Determination of the maximum frequency of shoulder girdle rotation while walking

 

Determining of the maximum frequency of hand fluctuations

 

Determination of the trajectory of movement of the common center of mass of the body

 

Determination of the acceleration of movement of the common center of mass of the body

 

Converting potential energy into kinetic energy while walking

 

Converting potential energy into kinetic energy while running

 

Anti-gravity dynamic functions:

 

Support pelvic and body while walking


Support pelvic and body while running

 

Reducing body weight while walking (lifting force generation)

 

Reducing the vertical component of the reaction force while walking

 

Reducing the transverse component of the reaction force while walking

 

Tribological functions:

 

Influence on friction coefficient

 

Influence on the reaction force of the femoral head

 

Static functions

 

Stabilization functions:

 

- of pelvis in one-support orthostatic position

 

- of pelvis in two-support asymmetrical orthostatic position

 

- of femoral head in the acetabulum:

 

- macrostabilization (antiluxation)

 

- microstabilization (antisubluxation)

 

Anti-gravity static functions (suspension):

 

- of pelvis in one-support orthostatic position

 

- of pelvis in two-support asymmetrical orthostatic position

 

- of femur with flexion-adduction-supination (legs crossed sitting pose)

 

Conducting functions (bridge, tunnel):

 

- for transit vessels (arterial, venous, lymphatic)

 

- for nerves (rr. post. n. obtur., rr. musc. n. fem., n. glut. inf. …)

 

Functions of the femoral head connection to the:


- fossa acetabulum

 

- incisura acetabulum

 

- ligamentum transversum

 

- periosteum of the pelvis

 

- membrana obturatoria

 

Tensorogenic functions:

 

Influences on the distribution and magnitude of internal forces (stresses) in the:

 

- femoral head (below «+»; above «-»)

 

- acetabulum (below «+»; above «-»)

 

- external ligaments and joint capsule (shunt)

 

- transverse ligament of the acetabulum (spraining)

 

- abductor muscle group (shunt)

 

Influences on the shape, size and position (deformation, displacement):

 

- of femoral head

 

- of femoral neck

 

- of acetabulum

 

- of hip bone

 

- of pelvis

 

- of lumbosacral spine

 

Biochemical functions of the LCF (Table 2)

Functions of regulation of synovial fluid properties:


- volume


- fluidity


- osmotic pressure


- viscosity


- surface tension


- wetting


- density


- temperature


- gas pressure


Producing functions:

 

Water excretion


Production of organic components


Production of inorganic components


Gas excretion


Excretion of atypical chemicals


Absorption function:

 

Water absorption


Absorption of organic components


Absorption of inorganic


Absorption of atypical chemical compounds (e.g. drugs)


Gas absorption


Dissolution functions:

 

Dissolution of inorganic substances (urates, calcium dihydropyrophosphate, hydroxyapatite)


Dissolution of organic substances (fibrinolysis, emulsification of bone marrow fat)


Gas dissolution


Deposition functions:

 

Crystallization of inorganic substances (urates, calcium dihydropyrophosphate)


Protein denaturation


Demulsification of fat


Biological functions of the LCF (Table 3)

Adaptation functions:


Synovial fluid volume regulation


Synovial fluid composition regulation


Hip joint temperature regulation


Hip joint pressure regulation


Involvement in immune processes


Maintaining one-support orthostatic position and two-support asymmetrical orthostatic position


Device for locomotion


Resource allocation functions:


Power distribution


Material distribution


Synthetic functions:


Cytopoietic function (synoviocytes, histiocytes, lymphocytes, neutrophils, monocytes)


The formation of chondromic bodies (synovial chondromatosis)


The formation of synovial cysts


Sanitation functions (synovial fluid sanitation):


Destruction function (cells, fibers, bacteria, tissue detritus, pus, blood clots, bone, cartilage fragments)


Extraction function (removal of degradation products)


Hormonal functions of adipose tissue:


Hormone synthesis (leptin, angiotensin, estrogen, resistin, adipsin, adiponectin)


Enzyme synthesis (plasminogen, liporotein lipase)


Peptide synthetsis (cytokines, eicosanides)


Remodeling functions:


Synovial fluid remodeling


Remodeling of adipose tissue of the acetabulum


Remodeling of the ligamentous apparatus


Articular cartilage remodeling


Acetabular labral remodeling


Bone remodeling


Tendon remodeling of abductor muscles


Remodeling muscle tissue of abductor muscles


Shape-forming functions (morphogenesis, transformation):


The formation of the external ligaments of the hip joint


The formation of cartilage (labrum acetabulum, femoral head, cartilage model of the acetabulum)


The formation of hip bone and femur


The formation of adjacent joints (pubic symphysis, sacroiliac joint, knee)


The formation of the parts of the skeleton (pelvis, spine)


Trophic functions:


Cartilage nutrition


Blood supply of the femoral head


Transport functions:


Tissue transport


Blood circulation


Lymphatic circulation


Information functions of the LCF  (Table 4)

Conductive functions:


Afferent function


Efferent function


Receptor functions:


Mechanoreceptor functions:


Baroreceptor function


Vibroreceptor function


Tensoreceptor function


Thermoreceptor functions:


Cold-sensitive function


Heat-sensitive function


Chemoreceptor function


Sensitive functions:


Kinesthesia


Proprioception


Nociception


Immuno-information functions:


Cellular immune function


Humoral immune functions


Trigger function


Metronome function


Levels of evidence of functions of the LCF with their conventional names and symbols (Table 5)

Color and number designations of evidence levels

Names of evidence levels

1

Axiom

2

Research

3

Experiment

4

Observation

5

Calculation

6

Figure

7

Publication

8

Hypothesis

9

Error


Keywords 

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, role, function, hip joint, biomechanics



                                                                   


Comments

Popular posts from this blog

LCF in 2025 (September)

  LCF in 2025 ( September )   (Quotes from articles and books published in  September  2025 mentioning the ligamentum capitis femoris)   Zhang, Z., Dong, Q., Wang, T., You, H., & Wang, X. (2025). Redescription of the osteology and systematic of Panguraptor lufengensis (Neo-theropoda: Coelophysoidea).   01 September 2025. PREPRINT (Version 1)  [i]   researchsquare.com   Tripathy, S. K., Khan, S., & Bhagat, A. (2025). Surgical Anatomy of the Femoral Head. In A Practical Guide to Management of Femoral Head Fracture-Dislocation (pp. 1-13). Singapore: Springer Nature Singapore.   [ii]   link.springer.com   Yoon, B. H., Kim, H. S., Lim, Y. W., & Lim, S. J. (2025). Adhesive Capsulitis of the Hip: Clinical Features, Diagnosis, and Management. Hip & pelvis , 37 (3), 171-177.    [iii]    pmc.ncbi.nlm.nih.gov      Bharath, C. M., Aswath, C. A., Ayyadurai, P., Srinivasan, P....

0cent.4Q158.1-2

  Content [i]   Annotation [ii]   Original text [iii]   Translation [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Fragments 1-2 of Dead Sea Scroll 4Q158.1-2, which previously contained part of Genesis 32 with a mention of ligamentum capitis femoris (LCF). We have translated the reconstructed text of M.M. Zahn (2009). The English translation is available at: 0 cent .4 Q 158.1-2 . [ii]   Original text Photocopy   Dead Sea Scroll 4Q158, fragments 1-2 (Plate 138, Frag. 4 B-358482), material – parchment, text – Hebrew, period – Herodian. A screenshot of the original from The Leon Levy dead sea scrolls Digital Library collection, © 2025 Israel Antiquities Authority  deadseascrolls.org.il   (Fair use for criticism, study and comparison; sharpening, color correction, and captions done by us.).   Transcription Dead Sea Scroll 4Q158, fragments 1-2, lines 11...

EXTERNAL LIGAMENTS & LCF

  external ligaments & LCF First experiments to study the interaction of the external ligaments and the ligamentum capitis femoris in a model: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_6.html Pathological consequences of lengthening of the ligamentum capitis femoris: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_63.html   norm: https://kruglayasvyazka.blogspot.com/2024/06/blog-post_50.html   #ligamentum_teres   #ligamentum_capitis_femoris   #hip   #biomechanics    Publication in the facebook group 03/27/2025.                                                                                                                     BLOG CONTE...

1802PalmeraniÁ

   Palmerani Á , drawing Jacob wrestling with the angel (1802 ).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Ángel  Palmerani  – Jacob Wrestling with the Angel  ( 1802); original in the  a...

1971CracraftJ

   Content [i]   Annotaction [ii]   Original in  English [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotaction F ragment s of the article: Cracraft J. The functional morphology of the hind limb of the domestic pigeon, Columba livia. (1971). The author studied the ligamentum capitis femoris (LCF) in the pigeon. Its strength is noted and its attachment areas and biomechanics are described. The LCF functions in conjunction with the posterior acetabular ligament. Translation into Russian is available at the link: 1971CracraftJ .  [ii]   Original in  English Quote, p. 182 TERES LIGAMENT The teres ligament (ter lig; fig. 2) arises from the dorsal portion of the head of the femur (fovea capitis; see Stolpe, 1932, p.165 ). A short and broad ligament, it curves ventromedially to the anteroventral edge of the inner opening of the acetabu...

1980WalkerJM

   Content [i]   Annotation [ii]   Original text [iii]   Illustrations [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Article : Walker JM. Growth characteristics of the fetal ligament of the head of femur: significance in congenital hip disease (1980). The author discusses the embryonic development and size of the ligamentum capitis femoris (LCF) in normal and dysplastic hips. The text in Russian is available at the following link: 1980WalkerJM . [ii]   Original text Growth Characteristics of the Fetal Ligament of the Head of Femur: Significance in congenital hip disease   J.M. WALKER, Ph.D.   Abstract   Measurement of the length and width of the ligament of the head of femur (ligamentum teres) in 140 normal human fetuses between 12 weeks and term provides limits for growth changes in this structure. These observations provide no morphological evid...

1910SuttonHA_DrinkerCK

  Fragments from the book Sutton HA, Drinker CK. Osteology and syndesmology (1910). The selected fragments discuss the anatomy and topography of the ligament of the femoral head (LCF). According to the authors, this structure has low strength, but Galen of Pergamon (2-3rd cent.) described it as «the strongest» ( 1829KühnCG ). [Eng] Quote 1. p. 76 . The Cotyloid Lig't., or Cartilage, surmounts the edge of the Acetabulum except where it is broken by the Notch. This ligament simply deepens the cavity. The centre of the Acetabulum, by a rough area, the Cotyloid Fossa, attaches the Ligamentum Teres. Quote 2. p. 79. Head. Slightly more than a half sphere in shape. An articular surface for the Acetabulum occupies it, except at a fossa which attaches the Ligamentum Teres. Quote 3. p. 86. Two connect the bones. They are: 1. Ligamentum Teres: — Weak. Passes between the centre of the Acetabulum and the oval fossa upon the Head of the Femur. It lies outside the synovial membrane. External link...

1541MondinoL_DryanderJ

  Fragment from the book Mondino de Luzzi, Dryander J. Anatomia Mundini (1541). An early description of the anatomy and role of the ligamentum capitis femoris (LCF) is presented. The pathogenesis of lameness and soft tissue atrophy in LCF pathology is discussed. For more details, see the commentary in  1541MondinoL_DryanderJ [Rus] .  Quote p. 62. [Lat] De anatomia cruris [&] pedis. Postea eleua musculos & chordas &, uide ossa. Et primura est os foemoris supra quod fabricatae sunt spondiles dorsi: & per consequens totum corpus in parte inferiori habet pixidem quondam, in cuius concauitate locata est extremitas rotunda canna coxae, que uocatur uertebrum. Et in medio amborum in parte anteriori est quod dam ligamentum, quod aliomodo porestuocari uertebrum: & quando hoc uel primum resilit foras: tunc niecesse ed hominem claudicare, quia crus hic elongatur & firmari non potest; & totum non bene potest supportari: & necesse eit etiam ut crus tab...

18c.Augsburg

  Painting on glass from Augsburg – Jacob wrestling with the angel (18 cent.).  Depicting the circumstances and mechanism of the ligamentum capitis femoris (LCF) injury based on the description in the Book of Genesis: 25 And Ja cob was left alone; and there wrestled a man with him until the breaking of the day. 26 And when he saw that he could not prevail against him, he struck against the hollow of his thigh ; and the hollow of Jacob's thigh was put out of joint, as he was wrestling with him. … 33 Therefore do the children of Israel not eat the sinew which shrank, which is upon the hollow of the thigh, unto this day; because he struck against the hollow of Jacob's thigh on the sinew that shrank.  ( 1922LeeserI , Genesis (Bereshit) 32:25-26,33) More about the plot in our work:  Ninth month, eleventh day   ( 2024 АрхиповСВ. Девятый месяц, одиннадцатый день ).     Author unknown, painting on the reverse of glass from Augsburg – Jacob wrestling with the a...

1873MeyerGH

  Professor  Georg Hermann von Mayer discovered a pressure mark from the ligamentum capitis femoris (LCF) on the head of the femur. In the fragment presented to your attention, the author points out that the named depression indicates the tension of the LCF in the position of flexion and external rotation of the hip. This idea of Mayer was later repeatedly cited, see, for example, the work of Hermann Welcker  " Ueber das Hüftgelenk, nebst einigen Bemerkungenüber Gelenke überhaupt, insbesondere über das Schultergelenk " (1876). von Meyer GH. Die Statik und Mechanik des menschlichen Knochengerüstes. Edited, Leipzig: Verlag von Wilhelm Engelmann; 1873. [fragment] Quote pp. 342-344   Neben der Gelenkkapsel befindet sich in dem Hüftgelenke noch ein eigenthümlicher Bandapparat, das ligamentum teres, über dessen Bedeutung sehr verschiedene Auffassung gefunden wird. Von der einen Seite wird ihm nämlich entschieden ...