Skip to main content

1920FrazerJES

 

Fragments from the book: Frazer JES. The anatomy of the human skeleton (1920). The author describes the attachment and development of the ligamentum capitis femoris (LCF), as well as its role as a vascular and nerve conductor. The text in Russian is available at the following link: 1920FrazerJES.




Fig. 104. — Outer view of the acetabular and ischio-pubic regions. A. is a region on the bone in front of the position of Quadratus femoris which is in relation with the tendon of Obturator externus and some loose fibro-fatty tissue that permits changes in place of the tendon with movement of the joint. B. is a sloping surface of bone which supports Pectineus but does not give origin to it; the surface extends out to the ilio-pectineal eminence where the fascia covering the Pectineus (pubic portion of fascia lata) reaches the bone at a. The front of the eminence is roughened by fibres belonging to the pubo-femoral group of ligaments. These are separated from the ilio-femoral set by an interval, apparent on the bone and marking the limit of the secondarily added pubic area of articular surface (see Fig. 106), where the synovial cavity is protruded as the sub-psoas bursa ; this is seen in the smaller figure. The Psoas lies on the bursa and the surface C. D. is covered by Gluteus minimus, which arises above the dotted line ; below D. the muscle lies on the reflected head of the Rectus and the capsule of the joint. O. and J.C. are branches of the obturator and internal circumflex arteries anastomosing round Obturator externus and giving twigs through the cotyloid notch into the cotyloid fossa and so into the lig. teres, which is attached round the margins of the fossa and to the transverse ligament that extends between the lips of the notch. X. marks an ill-defined depression on the margin, which indicates the spot where the origin of Adductor magnus passes from the outer side of the pubic ramus to the lower aspect of the ischial tuberosity ; it therefore also marks the hinder limit of origin of Gracilis.


Quote pp. 125-126.

The Acetabular Region (Fig. 104). — It has already been said that the three main elements of the bone are all represented in the acetabulum. The Ischium is credited with forming rather more than two-fifths, the Ilium with rather Jess than this, while the pubis accounts for the remaining fifth. But as a matter of fact the triradiate cartilage that separates these elements, almost till puberty, develops a variable number of small ossifying centres in the floor of the acetabulum: these may fuse to form a small separate bone, the os acetabuli, but in any case there is ultimate junction of the various parts, and the acetabular centres are usually described as forming a part of the pubic element.

The articular surface of the acetabulum surrounds on three sides the non-articular cotyloid or acetabular fossa, which contains the fatty tissue of the ‘‘Haversian gland,” and opens below at the cotyloid notch. The notch is bridged across by the transverse ligament, a tendinous structure continuous with the fibro-cartilaginous cotyloid ligament that is attached to the whole length of the edge of the brim: vessels and nerves pass through the notch, under the transverse ligament, to enter the ligamentum teres. The fibrous basis of the ligamentum teres is attached to the ischial and iliac parts of the cotyloid fossa and to the transverse ligament : its synovial covering is attached to the whole margin of the fossa and the whole length of the transverse ligament below, covering the fossa but lying free on its surface. The round ligament is the remains of the original ventral wall of the capsule (Fig. 106). In the human embryo the Ischium and Ilium alone are concerned in the articulation with the femur and the capsule is attached round their ventral margin: the pubic cartilage is extracapsular. As the pubis extends it is still separated by the cellular capsule from the femur. Later it breaks through this capsule and becomes articular, the synovial cavity extending over it from the Ilium. In this way the original attachment of the capsule is only left on the Ischium as the fibrous basis of the Ligamentum teres. In the adult the pubic articular surface is still more or less distinct from the iliac surface, and the same distinction is usually marked on the rim by a shallow notch; here the communication may take place of the joint with the sub-psoas bursa, between the Iliac and pubic parts of the capsule. Above this notch is the large rough area for the A-shaped Ilio-femoral band, spreading on to the lower half or more of the anterior inferior spine, and below and internal to it is the area for the pubo-femoral band which extends inward along the front edge of the upper pubic ramus, overhanging the issuing obturator nerve.

The direct tendon of the Rectus femoris is attached to the upper part of the anterior inferior spine, so that it rests on the ilio-femoral band at its origin: outside this the line of its attachment passes. downwards and backwards, to run into the cotyloid ligament and capsule at the top of the acetabulum, thus forming the reflected head. Observe that this must be under cover of Gluteus minimus, arising above the inferior curved line (see Fig. 105).

At the back of the acetabulum synovial membrane comes over the cotyloid ligament and touches the bone: this occurs from the transverse ligament below to the reflected tendon of Rectus above. In front the synovial membrane does not transgress the cotyloid ligament, but passes nearly directly from it to the strong capsule.

Fig. 105. — Posterior view of the capsule of hip, showing the circular fibres and reflected tendon of Rectus; this sends some fibres to the circular band.


Fig. 106. — To illustrate the formation of the ligamentum teres. In its early stage the ilium (il) and ischium (is) are alone concerned in the articulation, the synovial lining passing off them on to the capsule which is attached round their surfaces. The pubis is covered by these fibres and has né articular area, In the next stage the covering fibres are destroyed and the pubis has acquired an articular surface (p). This extends, and the front part of the original ischial capsule is caught, so to speak, between the extending surface and the ischium ; these fibres persist and remain attached to the ischial region, but on their surface the synovial cavity has extended, as shown in the last diagram, and has joined the older cavity below as well, parang between the femur and the lower portion of the attached capsule. Thus a synovial funnel is formed, wider below where it includes the attachment of the fibres and narrowed at its femoral end, where it is fastened to the fovea.


Fig. 107. — Postero-external aspect of right os innominatum. The curved lines are somewhat diagram- matically drawn: for account see the text. Some of the fibres of the great sciatic ligament run on to the surface of the bone round x and give origin here to part of G. maximus. The position of the sacrum and great ligament is indicated, with the origin of the muscle from it. A is the surface below the inferior curved line, covered by G. min.; B, the area covered by Pyriformis, with the great sciatic nerve interposed ; C, covered by Obturator internus and Gemelli, which lie between the nerve and the bone, but have the nerve to Quadratus between them and the bone. The muscles mentioned are practically in a continuous curved plane, so that the areas A, B, and C make a convex surface, continuously curved and smooth, round the acetabulum ; the muscles pass to the raised trochanter, so do not mould the bone by pressure. The lower aspect of the tuber ischii, below the facets for the hamstring muscles, shows two ow wed surfaces, of which one looks outwards and gives origin to fibres of Adductor magnus (ischio-condylar portion), while the other looks inwards (D) and is covered by fibrofatty tissue which is continuous round the great sacro-sciatic ligament with that of the ischio-rectal fossa: in this tissue is a badly-defined bursa which lies under the tuberosity in sitting, the hamstrings and Adductor moving to the outer side of the prominence when the limbs are bent for that purpose.

 

Quote pp. 138-139.

The upper end includes head, neck, and two trochanters. The head is connected with the shaft by the elongated neck, which is directed upwards and inwards and somewhat forwards,* forming an angle of about 125 degrees with the shaft. The head is about two-thirds of a sphere, and has on it a depression, the fovea femoris, for the attachment of the round ligament of the joint. The neck expands towards the shaft and is overhung externally by the great trochanter: there is a deep digital fossa under, cover of the back part of this, for the insertion of Obturator externus. The great trochanter is for the attachment of muscles of the gluteal group.

* Variable in amount of rotation; may be even directed slightly backwards. 

 

Quote pp. 141-142.

The Ligamentum teres is a weak synovial attachment of the head of the femur to the cotyloid fossa and transverse ligament: it is (p. 127) the remains of the primitive capsule isolated by the secondary taking up of the pubic surface into the joint, and has little mechanical value, but carries some small vessels and nerves to the head of the bone.

 


Fig. 118. — Upper end of right femur. The epiphysial line for the great trochanter is marked in green round its base. The “ retinacula of Weitbrecht,’’ fibres running back toward the head under the ovial membrane, are shown only where they are congregated into their three main groups; they are derived from the transverse capsular fibres, and the upper one obtains many fibres from Pyriformis (see Fig. 117). 1. Anterior aspect. Observe that the Gluteus minimus is attached only to the outer ridge of the trochanter, but its tendon is continuous below with an aponeurotic sheet, the ilio-trochanteric band, which covers the bursa in front and reaches the bone internal to it. The upper part of the origin of Crureus is mainly tendinous. The extension of the cartilage of the head on to the neck is shown at x; this lies under the ilio-femoral band or, if the opening for the sub-Psoas bursa is large, under the tendon of the Psoas. 2. From the outer side. The oblique insertion of Gluteus medius is continuous below and in front with that of Gluteus minimus, and frequently with that of Pyriformis above and behind ; it divides this aspect of the trochanter into two areas, one, C, in front and above, under cover of medius and therefore bevelled off in the direction of that muscle, the other, A, below and behind, covered by Gluteus maximus and therefore moulded by that muscle so that it is more vertically directed and curved from before backwards, The surface C carries a bursa, but 4 has only occasionally an extension of the bursa situated below in relation with it. B, surface covered by Vastus externus and more or less flattened by it. Crureus fuses with V. externus at alower level. 3. Posterior aspect. D, surface covered by Quadratus femoris; deep to this muscle the Obturator externus lies against the bone, moulding the back and lower part of the neck in the area F as it passes to the digital fossa. 4. From the inner side. Observe the pointed area between the spiral line and pectineal line which is occupied by Iliacus. E, inner surface, covered by Vastus internus but not affording origin to it; the Crureus does not transgress the inner border.




External links

Frazer JES. The anatomy of the human skeleton. 2nd ed., London: J. & А. Churchill, 1920. archive.org

 

Authors & Affiliations

John Ernest Sullivan Frazer (1870-1946) Professor of Anatomy in the University of London. embryology.med.unsw.edu.au

 

Keywords

ligamentum capitis femoris, ligamentum teres, ligament of head of femur, anatomy, blood supply, development, attachment, conductor



NB! Fair practice / use: copied for the purposes of criticism, review, comment, research and private study in accordance with Copyright Laws of the US: 17 U.S.C. §107; Copyright Law of the EU: Dir. 2001/29/EC, art.5/3a,d; Copyright Law of the RU: ГК РФ ст.1274/1.1-2,7


                                                            

Comments

Popular posts from this blog

IMPROVING POSTOPERATIVE COMFORT...

  Improving Postoperative Comfort and Increasing the Reliability of Hip Prostheses by Supplementing with Artificial Ligaments: Proof of Concept and Prototype Demonstration S.V. Arkhipov, Independent Researcher, Joensuu, Finland       CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Results and Discussion [v]   Static Tests [vi]   Dynamic Tests [vii]   Prototype Fabrication and Testing [viii]   Conclusion [ix]   References [x]   Application [i]   Abstract The principle of operation of an experimental total hip endoprosthesis augmented with ligament analogs has been demonstrated in single-leg vertical stances and at the mid-stance phase of the single-support period of gait. The experiments were conducted on a specially designed mechatronic testing rig. The concept of the important role of the ligamentous apparatus is further illustrated by a set of demonstrative mechanical models. The...

1970MichaelsG_MatlesAL

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Michaels G, Matles AL. The role of the ligamentum teres in congenital dislocation of the hip (1970). The authors proposed an analogy for the role of the ligamentum capitis femoris (LCF) as a “ball and chain control” and noted that it can spontaneously reduce congenital hip dislocation. The text in Russian is available at the following link: 1970MichaelsG_MatlesAL . [ii]   Original text Quote p. 199 Many papers in the literature have implicated the ligamentum teres as a hindrance to the late open reduction of a congenitally dislocated hip. Occasionally the ligamentum teres has been reported to be absent. However, in most cases it is hypertrophied and elongated. Our present knowledge confirms the fact that congenital dislocation of t...

11th-15th Century

   11th-15th Century Catalog of archived publications of the specified period        11th century 976-1115Theophilus Protospatharius  The author writes about the  normal anatomy of the LCF and its connective function. 1012-1024Avicenna   The author writes about the localization and  variant of the pathology LCF, leading to hip dislocation. 1039-1065Giorgi Mtatsmindeli   The translator mentions the LCF damage, and notes its presence in animals. 12 th century 1120-1140Judah Halevi   The author mentions LCF (גיד) of mammals. 1176-1178(a)Rambam  The author mentions the pathology of LCF (גיד) in humans and points out the presence of this structure in animals. 1176-1178(b)Rambam  The author writes about the localization of LCF (גיד) ) and distinguishes it from a tendon,   blood vessel or nerve. 1185-1235David Kimchi  The author writes about the localization, purpose, and injury of the LCF (גיד), and also talks abo...

NEWS 2026

New publications of our resource   in 2026 The initial phase of collecting data on LCF, accumulated prior to the 20th century, is largely complete. Next, we plan to analyze and synthesize thematic information, adding data from the 20th and 21st centuries. The work will focus primarily on: prevention, diagnosis, arthroscopy, plastic surgery, and endoprosthetics.  January 14, 2026 2026 ArkhipovSV.  THE GIFTS OF THE MAGI FOR ORTHOPEDIC SURGEONS ( A Novel Technique for Proximal Fixation of Ligamentum Capitis Femoris Reconstruction ). January 05, 2026 2018YoussefAO The article describes a me thod for transposition of the proximal attachment of the LCF in congenital hip dislocation.   2007WengerD_OkaetR The authors demonstrated in the experiment that the strength of the LCF is sufficient to ensure early stability during hip joint reconstruction in children. January 04, 2026 2008 BacheCE _TorodeIP The article describes a method for transposition of the proximal att...

Catalog. Classifications of LCF Pathology

  The classifications are intended to systematize of ligamentum capitis femoris pathology and assist in the development of general approaches to its description, registration, analysis and treatment.   Keywords ligamentum capitis femoris, ligamentum teres, ligament of head of femur, hip joint, histology, pathological anatomy, pathology, trauma INTRODUCTION In Russia, the initial attempts to classify pathology of the ligamentum capitis femoris (LCF) were made by morphologists. The development of arthroscopic surgery has made it possible to identify various, previously undescribed types of LCF pathology, which prompted the development of various modern classifications based on intraoperative observations. Analysis of literature data and our own morphological observations allowed us to propose a General Classification of the Ligamentum Teres Pathology, which has the form of a collection of classifiers, as well as a Classification of Functions of the Ligamentum Teres. The ...

1834MitchellE_KnoxR

Description and drawings of the proximal attachment and blood supply of the ligamentum capitis femoris (LCF) from book Mitchell E, Knox R. Engravings of the ligaments (1834 ). PLATE VI   PLATE VI. … 49. The round ligament of the hip-joint, which arises from the sinus in the bottom of the acetabulum and descends into the head of the femur. 50. A portion of it which is thinner and membranous. 51. Portion of a ligament which arises from the outer surface of the ischiatic cavity and surrounds its neck as far as the notch of the acetabulum; there however it makes its way into the acetabulum, passing under the arch of the cotyloid ligament. 52. Branch of the obturator artery. 53.   Two twigs which penetrate into the cotyloid cavity along with the ligament 51, to mingle with the round ligament.   PLATE VII PLATE VII. Fig. 1. … 19, 19. Remarkable glands, which are concealed in the sinus of the acetabulum. 20. Origin of the exterior ligament which arises fr...

2008WengerDR_MiyanjiF

  Article: Wenger DR et al. Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results (2008). The article describes a method of open reconstruction of the ligamentum capitis femoris (LCF) for hip dysplasia. The text in Russian is available at the following link: 2008WengerDR_MiyanjiF . Ligamentum teres maintenance and transfer as a stabilizer in open reduction for pediatric hip dislocation: surgical technique and early clinical results   Wenger DR, Mubarak SJ, Henderson PC, Miyanji F   CONTENT [i]   Abstract [ii]   Introduction [iii]   Materials and Methods [iv]   Surgical technique & Results [v]   Discussion & Conclusion [vi]   References [vii]   Application [i]   Abstract Purpose The ligamentum teres has primarily been considered as an obstruction to reduction in children with developmental dislocation of the hip (DDH). In the ea...

LCF in 2025 (June)

  LCF in 2025 ( June )   (Quotes from articles and books published in June 2025 mentioning the ligamentum capitis femoris)   Kuhns, B. D., Kahana-Rojkind, A. H., Quesada-Jimenez, R., McCarroll, T. R., Kingham, Y. E., Strok, M. J., ... & Domb, B. G. (2025). Evaluating a semiquantitative magnetic resonance imaging-based scoring system to predict hip preservation or arthroplasty in patients with an intact preoperative joint space.  Journal of Hip Preservation Surgery , hnaf027.    [i]     academic.oup.com   Iglesias, C.  J. B., García, B. E. C., & Valarezo, J. P. P. (2025) CONTROLLED GANZ DISLOCATION.   EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal. 11(5)1410-13. DOI: 10.36713/epra2013    [ii]       researchgate.net   Guimarães, J. B., Arruda, P. H., Cerezal, L., Ratti, M. A., Cruz, I. A., Morimoto, L. R., ... & Ormond Filho, A. G. (2025). Hip Microins...

1741HeisterL

  Fragments from the book Heister L. Compendium anatomicum… T. I (1741 ). The first edition was published in Latin in 1721; a translation into Russian is also known ( 1757 ГейстерЛ ). Selected fragments of the treatise describe the anatomy and topography ligamentum capitis femoris (LCF). The author mentions a discussion between Jean-Louis Petit and Nicolas Andry de Bois-Regard regarding the name and function of the LCF ( 1725AndryN ). Quote p. 46 [Lat] ; acetabulum a), pro femoris articulation: in quo minor cavitas pro, glandulæ mucilaginosæ situ commodo; & incisura pro vasorum in hanc glandulam & ligamentum teres b) femoris ingressu; locos insertionis huius ligament; & supercilia cum eorum usu notanda. … Nota b) Haud pridem inter Andryum & Petitum Parisiis lites ortæ sunt, utrum hoc ligamentum vocandum sit teres, an planum. Planum revera in cadaveribus deprehenditur, non teres; attamem usu invaluit, ut præstantissimi etiam Anatomici illud teres appella...

2018YoussefAO

  Content [i]   Annotation [ii]   Original text [iii]   References [iv]   Source  &  links [v]   Notes [vi]   Authors & Affiliations [vii]   Keywords [i]   Annotation Abstract of the article: Youssef AO. Medial approach open reduction with ligamentum teres partial excision and plication for the management of congenital hip dislocation (2018). The article describes a method for transposition of the proximal attachment of the ligamentum capitis femoris (LCF) in congenital hip dislocation. The text in Russian is available at the following link: 2018YoussefAO . [ii]   Original text Abstract Because of the known tendency for early redislocation following open reduction, we developed surgical methods for shortening the ligamentum teres to improve immediate postoperative stability when performing medial approach open reduction (MAOR) for the management of developmental dysplasia of the hip. Between 2004 and 2014, 32 patients w...